Union and Intersection
Definition 1. For any events E,FE,F, we define the union of EE and FF by E∪FE∪F. Similarly, the intersection of EE and FF is defined as EF=E∩FEF=E∩F.
두 사건 E,FE,F가 있을 때 이 사건 둘 중 하나가 혹은 둘 다 일어나는 사건을 union, 합사건이라고 하고, 둘 다 일어나는 사건을 intersection, 곱사건이라고 부른다. 숫자를 늘려서 다음과 같이 무한합, 무한곱도 정의할 수 있다.
Definition 2. Let E1,E2,...E1,E2,... be events. We define the union of these events, denoted by ∪∞n=1En∪∞n=1En, by the event that consists of all outcomes that are in EnEn for at least one value of n=1,2,...n=1,2,.... Similarly, we define the intersection of the events EnEn, denoted by ∩∞n=1En∩∞n=1En, by the event consisting of those outcomes that are in all of the events En,n=1,2,...En,n=1,2,....
Mutually Exclusive
Definition 3. If any event EE is an empty set, we call EE the null event and denote it by ∅∅. For any events E,FE,F, if EF=∅EF=∅, then EE and FF are said to be mutually exclusive.
두 사건의 곱사건이 null event, 즉 영사건이라면 두 사건은 결코 동시에 일어나지 않으므로 mutually exclusive, 상호 배반이라고 한다.
Proposition
Proposition. For an event E,FE,F,
(1) P(E)+P(Ec)=1P(E)+P(Ec)=1, or P(Ec)=1−P(E)P(Ec)=1−P(E)
(2) If E⊂FE⊂F, then P(E)≤P(F)P(E)≤P(F).
(∵)(∵) Note that F=E∪EcFF=E∪EcF. Because EE and EcFEcF are mutually exclusive, from Axiom (3), we obtain P(F)=P(E)+P(EcF)P(F)=P(E)+P(EcF) which proves the result.
(3) P(E∪F)=P(E)+P(F)−P(EF)P(E∪F)=P(E)+P(F)−P(EF)
(∵)(∵) Note that E∪F=E∪FEcE∪F=E∪FEc. Then we have P(E∪F)=P(E)+P(FEc)P(E∪F)=P(E)+P(FEc). Because F=EF∪FEcF=EF∪FEc, P(E∪F)=P(E)+P(F)−P(EF)P(E∪F)=P(E)+P(F)−P(EF).
Proposition (3)은 the inclusion-exclusion identity, 포함 배제 원리라고도 알려져 있으며, 다음과 같이 일반화 할 수 있다.
The Inclusion-Exclusion Identity
For any sequence of event E1,...,EnE1,...,En, P(n⋃i=1Pi)=n∑i=1P(Ei)−∑i1<i2P(Ei1Ei2)+⋯+(−1)r+1∑i1<⋯<irP(Ei1⋯Eir)+⋯+(−1)n+1P(E1⋯En)