The Algorithm of Calculating The Inverse of Triangular Matrices
·
Mathematics/Linear Algebra
주어진 행렬을 LU decomposition을 한 뒤 LU 행렬 각각의 inverse를 구하면 역행렬을 빠르게 구할 수 있다. 이때 triangular matrix의 inverse를 빠르게 계산하는 방법을 소개하려고 한다. 예컨대 다음과 같은 상삼각 행렬의 역행렬을 계산해 보자. U=(368047005) 이때 각각의 성분에 대해서 따로따로 생각해 보자. Gauss elimination을 생각하면 역행렬의 대각 성분은 원행렬의 대각 성분의 역수가 된다. $$U^{-1} = \begin{pmatrix} \frac{1}{3} & * & * \\ 0 & \frac{1}{4} & * \\ 0 & ..
Positive Definite, Semidefinite
·
Mathematics/Linear Algebra
Positive Definite, Semidefinite Definition 1. Let TL(V) where V is a finite-dimensional inner product space, and let AMn×n(F). Then T is called positive definite [positive semidefinite] if T is hermitian and T(x),x>0 [T(x),x0],x0, and A is called positive definite [positive semidefinit..
Lagrange Interpolation Formula
·
Mathematics/Linear Algebra
Lagrange Interpolation FormulaLagrange Interpolation Formula, 즉 라그랑주 보간법이라고 불리는 이 방법은 주어진 (n+1)개의 점들을 모두 지나는 n차 이하의 다항식을 유일하게 결정하는 방법이다. Lagrange PolynomialDefinition 1. Let c0,,cn be distinct scalars in an infinite field F. The lagrange polynomials f0,,fn is defined by $$f_i(x) = \prod_{0 \leq k \neq i \leq n} \frac{x - c_k}{c_i - c_k} \text{ for } 0 \leq i \leq n...
Spectral Theorem
·
Mathematics/Linear Algebra
Spectral Theorem Theorem 1. Let TL(V) where V is a finite-dimensional inner product space over F with the distinct eigenvalues λ1,,λk. Assume that T is normal if F=C and that T is hermitian if F=R. For each i(1ik), let Wi be the eigenspace of T corresponding to the eigenvalue λi, and that $T_i..
Orthogonal Projection
·
Mathematics/Linear Algebra
Orthogonal Projection Definition 1. Let TL(V) be a projection, where V is an inner product space. We say that T is an orthogonal projection if R(T)=N(T) and N(T)=R(T). Remark Remark. (a) If V is finite-dimensional, by Theorem 2, we need only assume that one of the preceding conditions holds. (b) If WV is finite-dimensional, then there exists..
Projection
·
Mathematics/Linear Algebra
Projection Definition 1. Let W1,,WkV such that V=i=1kWi, and let TL(V) where V is a vector space. Then T is the projection on Wj if, whenever x=x1++xk with xiWi(i=1,,k), we have T(x)=xj. Theorem 1 Theorem 1. Let W1,,WkV such that V=i=1kWi where V is a vecto..
Hermitian Matrix
·
Mathematics/Linear Algebra
Hermitian MatrixDefintion 1. Let AMn×n(F). We say that A is hermitian (or self-adjoint) if A=A.선형 연산자가 hermitian일 조건과 동일하게 hermitian인 행렬을 정의할 수 있다. 또한 Theorem 1의 행렬 버전을 말할 수 있다.Theorem 1Theorem 1. Let AMn×n(R). Then A is hermitian A is orthogonally equivalent to a real diagonal matrix. Proof. The proof is similar to the proof of Theor..
Normal Matrix
·
Mathematics/Linear Algebra
Normal MatrixDefintion 1. Let AMn×n(F). We say that A is normal if AA=AA.선형 연산자 T가 normal일 조건과 동일하게 normal인 행렬을 정의할 수 있다. 또한 Theorem 2의 행렬 버전을 말할 수 있다.Theorem 1Theorem 1. Let AMn×n(C). Then A is normal A is unitarily equivalent to a diagonal matrix.Proof. ()By Theorem 2, there exists an orthonormal basis for V c..
Unitary, Orthogonal Matrix
·
Mathematics/Linear Algebra
Unitary, Orthogonal MatrixDefinition 1. Let AMn×n(F). Then A is called a unitary matrix if AA=AA=I and is called an orthogonal matrix if AtA=AAt=I.Theorem 1에 근거해 unitary 혹은 orthogonal 행렬의 정의를 위와 같이 할 수 있다.RemarkRemark. AA=I [AA=I] the rows [columns] of A form an orthonormal basis for Fn.() $\delta_{ij} = I_{Ij} = (AA^*)_{ij} ..
Unitarily, Orthogonally Equivalent
·
Mathematics/Linear Algebra
Unitarily, Orthogonally Equivalent Definition 1. Let A,BMn×n(C) [Mn×n(R)]. Then A and B are unitarily equivalent [orthogonally equivalent] if there exists a unitary [orthogonal] matrix P such that A=PBP [A=PtBP].