Least Upper Bound Property
·
Mathematics/Real analysis
Ordered SetDefinition 1. An order $relation with the following two properties:(1) If $x \in S$ and $y \in S$, then one and only one of the statements $$x(2) $S$ is transitive.We call $S$ an ordered set if an order is defined in $S$.BoundedDefinition 2. Suppose $S$ is an ordered set, and $E \subset S$. (1) If there exists a $\beta \in S$ such that $x \leq \beta, \forall x \in E$, we say that $E$ ..