Partition
Definition 1. For a closed interval , we subdivide the interval into subintervals, not necessarily of equal widths, as choosing points between and that are in increasing order, so that . The set of all of these points, is called a partition of . And we denote the width of the th subinterval by which means that .
Norm of a Partition
Definition 2. We define the norm of a partition , written , to be the largest of all the subinterval widths.
Riemann Sum
Definition 3. Let be a function defined on . For given partition , we can select some point chosen in the th subinterval . Then we call the sum a Riemann sum for on the interval .
Definite Integral
Definition 4. Let be a function defined on a closed interval . We say that a number is the definite integral of over and that is the limit of the Riemann sums if the following condition is satisfied:
Given any number there is a corresponding number such that for every partition of with and any choice of in , we have
When the limit exists we write and we say that the definite integral exists or is intergrable over .
Epsilon-Delta Method와 같은 방식이다. 우리에겐 subinterval을 어떻게 잡을거냐, 다시 말해 partition을 어떻게 잡을거냐, 그리고 각 subinterval 안에 point 를 어떻게 잡을거냐 하는 문제가 있다. 그러나 임의의 보다 와 Riemann sum의 차이를 작게 만드는 partition과 point를 무조건 잡아낼 수 있다면 우리는 definite integral이 존재한다고 말한다.
A Formula for the Riemann Sum with Equal-Width Subintervals
Definition 4는 어떻게 definite integral을 계산하는지에 대해서는 얘기하지 않는다. 따라서 partition을 잡는 가장 보편적인 방법인 equal-width subinterval로 택하고 각 subinterval의 point를 endpoint로 잡으면 explicit하게 integral을 계산할 수 있다.
Integrability of Continuous Functions
Theorem 1. If a function is continuous over , or if has at most finitely many jump discontinuities there, then the definite integral exists and is integrable over .
모든 연속함수와 유한 개수 불연속 점을 가지고 있는 함수는 integrable하다.
Properties of Definite Integrals
Theorem 2. When and are integrable over , the definite integral satisfies the following rules:
(1)
(2)
(3)
(4)
(5) If has maximum value and minimum value on , then
(6) If on then
Reference is here:
https://product.kyobobook.co.kr/detail/S000003155860
Thomas' Calculus | Thomas - 교보문고
Thomas' Calculus |
product.kyobobook.co.kr