17) 상대론적 질량과 운동량 이전까지의 고전역학에 의하면, 물체에 에너지를 가하면 속도가 증가하여 운동량 혹은 운동 에너지가 증가하게 된다. 그러나 앞선 논의를 통해 물체의 속도의 크기는 결코 광속을 넘을 수 없으므로, 어떤 형태로든 질량이 증가할 수 밖에 없다는 생각을 할 수 있다. 이것을 상대론적으로 유도한 결과가 상대론적 질량, $$m = \gamma m_0$$ 이다. 이때 $m_0$는 관성질량으로, 상대론에서는 정지질량(Rest Mass)이 된다. 물체의 속도의 크기가 광속에 비해 매우 작은 경우, 고전적 질량으로 환원된다. 위 식의 양변에 물체의 속도 $v$를 곱하면, 상대론적 운동량이 얻어진다. $$p = mv = \gamma m_0 v$$ 수평 방향으로 두 물체 사이의 충돌을 통해 이를 유..
15) 쌍둥이 역설 상대성이론과 함께 많은 사람들에게 알려지게 된 쌍둥이 역설(Twin Paradox)을 살펴보자. 쌍둥이 역설은 1911년 솔베이 회의에서 랑저뱅(Paul Langevin)에 의해서 처음 거론된 역설로, 초기에는 많은 논쟁거리를 낳았으나 이후 많은 방법들로 논파된 역설이다. 위의 그림에서 $A$와 $B$는 쌍둥이로, $A$는 광속에 가까운 크기의 속도 $V$로 움직이는 우주선을 타고 지구에서 별까지 왕복 여행을 다녀온다고 하자. $B$는 지구에 남아있고, $B$를 기준으로 지구와 별 사이의 고유길이는 $L_0$이다. $B$ 기준으로 $A$는 광속에 가까운 크기의 속도로 움직이므로 시간 팽창에 의해 $A$가 타고 있는 우주선의 시계는 자신의 고유시간 $\Delta t_0$에 비해 $\De..
13) 광시계를 통한 시간 팽창의 유도 지난 포스트에서 로렌츠 변환으로 유도했던 시간 팽창을 Light Clock, 즉 광시계를 통한 사고실험을 도입해서 유도할 수 있다. 다음과 같이 $+x$축 방향으로 $V$의 속력으로 움직이는 우주선 안에 빛이 100% 반사율을 가지는 두 개의 거울 사이를 왕복 운동하는 장치가 있다. 거울 사이의 거리는 $L_0$로 일정하므로, 광속 불변의 원리에 의해 빛이 왕복운동하는 횟수는 시간에 비례하므로 이를 시계로 사용할 수 있다. 이때 우주선 내부 좌표계에서는 빛이 t0의 시간 간격을 가지고 위아래로만 왕복 운동하는 것으로 관측될 것이므로 $2L_0 = c \cdot t_0$ 의 관계가 성립한다. 그러나 우주선 밖 좌표계 기준으로는 우주선이 운동하고 있으므로 거울이 움직여..
동시성의 상대성에 이어서 특수상대성이론의 대표적인 결과인 '시간 팽창'(Time Dilation)과 '길이 수축'(Length Contraction)을 다뤄보자. 11. 시간 팽창 (Time Dilation) 다음 그림과 같이 $S$ 좌표계에 있는 관찰자가 $S$와 $S'$에 있는 시계가 가리키는 시간을 읽는 상황을 고려하자. 시계는 $S$를 기준으로 $x$의 위치에 있다. 이때 관찰자에 대해 정지해 있는 좌표계에서 읽는 시간을 '고유시간'(Proper Time)이라고 부른다. 위 그림에서 고유시간은 $S$에 있는 관찰자가 읽는 시간이므로 $t = t_1, t = t_2$가 고유시간이다. $S$에서 읽는 고유시간 간격 $t_0$는 $t_0 = t_2 - t_1$이다. 따라서 $S$에 있는 관찰자가 읽어내..