The Invariant Subspace
Definition 1. Let T∈L(V)T∈L(V). Then W≤VW≤V is called a TT-invariant subspace of VV if T(W)⊆WT(W)⊆W.
WW의 image가 다시 WW에 포함될 때 WW를 TT-불변 부분공간이라고 부른다. 자명하게 {0},V,R(T),N(T),Eλ{0},V,R(T),N(T),Eλ는 TT-불변 부분공간임을 알 수 있다.
The restriction of a Linear Operator
Definition 2. Let T∈L(V)T∈L(V), and let WW be a TT-invariant subspace of VV. Then the restriction TWTW of TT to WW is an linear operator TW∈L(W)TW∈L(W).
정의역을 WW로 축소시킨 TT의 restriction, 즉 축소사상은 공역 또한 축소시킨다.
Theorem 1
Theorem 1. Let T∈L(V)T∈L(V), and let WW be a TT-invariant subspace of VV (V is finite-dimensional). Then the characteristic polynomial of TWTW divides the characteristic polynomial of TT.
Proof. Let β={v1,...,vp}β={v1,...,vp} be an ordered basis for WW. Extend it to an ordered basis γ={v1,...,vp,vp+1,...,vn}γ={v1,...,vp,vp+1,...,vn} for VV. Let A=[TW]βA=[TW]β and let B=[T]γB=[T]γ. Note that B=(ACOD)B=(ACOD).
The characteristic polynomial g(t)g(t) of TWTW is g(t)=det(A−tIp)g(t)=det(A−tIp). Then the characteristic polynomial f(t)f(t) of TT is f(t)=det(B−tIn)f(t)=det(B−tIn) = det(A−tIpCOD−tIn−p)det(A−tIpCOD−tIn−p) = det(A−tIp)det(D−tIn−p)det(A−tIp)det(D−tIn−p) = g(t)det(D−tIn−p)g(t)det(D−tIn−p). Thus g(t)g(t) divides f(t)f(t). ◼
즉 어떤 불변 부분공간의 축소사상의 특성다항식을 계산하면 원 사상의 특성다항식의 정보를 알 수 있다. 이를 확장해서, 만일 V가 불변 부분공간들의 직합이라면 어떤 사상의 특성다항식은 축소사상들의 특성다항식으로 분해된다.
Theorem 2
Theorem 2. Let T∈L(V), and suppose that V=⨁ki=1Wi, where Wi is a T-invariant subspace of V for each i(1≤i≤k) (V is finite-dimensional). Suppose that fi(t) is the characteristic polynomial of TWi(1≤i≤k). Then f1(t)⋯fk(t) is the characteristic polynomial of T.
Proof. By Theorem 1, there exists an ordered basis βi for Wi(1≤i≤k) such that β=∪ki=1βi is an ordered basis for V. Then denote A=[T]β and Bi=[TWi]βi for 1≤i≤k. Then by Theorem 2, A=⨁ki=1Bi. Thus the characteristic polynomial f(t) of T is f(t)=det(A−tI)=det(B1−tI)⋯det(Bk−tI)=f1(t)⋯fk(t). ◼