Union and Intersection
Definition 1. For any events , we define the union of and by . Similarly, the intersection of and is defined as .
두 사건 가 있을 때 이 사건 둘 중 하나가 혹은 둘 다 일어나는 사건을 union, 합사건이라고 하고, 둘 다 일어나는 사건을 intersection, 곱사건이라고 부른다. 숫자를 늘려서 다음과 같이 무한합, 무한곱도 정의할 수 있다.
Definition 2. Let be events. We define the union of these events, denoted by , by the event that consists of all outcomes that are in for at least one value of . Similarly, we define the intersection of the events , denoted by , by the event consisting of those outcomes that are in all of the events .
Mutually Exclusive
Definition 3. If any event is an empty set, we call the null event and denote it by . For any events , if , then and are said to be mutually exclusive.
두 사건의 곱사건이 null event, 즉 영사건이라면 두 사건은 결코 동시에 일어나지 않으므로 mutually exclusive, 상호 배반이라고 한다.
Proposition
Proposition. For an event ,
(1) , or
(2) If , then .
Note that . Because and are mutually exclusive, from Axiom (3), we obtain which proves the result.
(3)
Note that . Then we have . Because , .
Proposition (3)은 the inclusion-exclusion identity, 포함 배제 원리라고도 알려져 있으며, 다음과 같이 일반화 할 수 있다.
The Inclusion-Exclusion Identity
For any sequence of event ,