Partition
Definition 1. For a closed interval [a,b][a,b], we subdivide the interval into subintervals, not necessarily of equal widths, as choosing n−1n−1 points {x1,...,xn−1}{x1,...,xn−1} between aa and bb that are in increasing order, so that x0=a<x1<⋯<xn−1<b=xnx0=a<x1<⋯<xn−1<b=xn. The set of all of these points, P={x0,x1,...,xn−1,xn}P={x0,x1,...,xn−1,xn} is called a partition of [a,b][a,b]. And we denote the width of the kkth subinterval by ΔxkΔxk which means that Δxk=xk−xk−1Δxk=xk−xk−1.
Norm of a Partition
Definition 2. We define the norm of a partition P, written ||P||, to be the largest of all the subinterval widths.
Riemann Sum
Definition 3. Let f be a function defined on [a,b]. For given partition P, we can select some point ck chosen in the kth subinterval [xk−1,xk]. Then we call the sum SP=n∑k=1f(ck)Δxk a Riemann sum for f on the interval [a,b].
Definite Integral
Definition 4. Let f be a function defined on a closed interval [a,b]. We say that a number J is the definite integral of f over [a,b] and that J is the limit of the Riemann sums ∑nk=1f(ck)Δxk if the following condition is satisfied:
Given any number ϵ>0 there is a corresponding number δ>0 such that for every partition P={x0,...,xn} of [a,b] with ||P||<δ and any choice of ck in [xk−1,xk], we have |n∑k=1f(ck)Δxk−J|<ϵ.
When the limit exists we write J=lim||P||→0n∑k=1f(ck)Δxk=∫baf(x)dx, and we say that the definite integral exists or f is intergrable over [a,b].
Epsilon-Delta Method와 같은 방식이다. 우리에겐 subinterval을 어떻게 잡을거냐, 다시 말해 partition을 어떻게 잡을거냐, 그리고 각 subinterval 안에 point ck를 어떻게 잡을거냐 하는 문제가 있다. 그러나 임의의 ϵ보다 J와 Riemann sum의 차이를 작게 만드는 partition과 point를 무조건 잡아낼 수 있다면 우리는 definite integral이 존재한다고 말한다.
A Formula for the Riemann Sum with Equal-Width Subintervals
∫baf(x)dx=limn→∞n∑k=1f(a+kb−an)(b−an)
Definition 4는 어떻게 definite integral을 계산하는지에 대해서는 얘기하지 않는다. 따라서 partition을 잡는 가장 보편적인 방법인 equal-width subinterval로 택하고 각 subinterval의 point를 endpoint로 잡으면 explicit하게 integral을 계산할 수 있다.
Integrability of Continuous Functions
Theorem 1. If a function f is continuous over [a,b], or if f has at most finitely many jump discontinuities there, then the definite integral ∫baf(x)dx exists and f is integrable over [a,b].
모든 연속함수와 유한 개수 불연속 점을 가지고 있는 함수는 integrable하다.
Properties of Definite Integrals
Theorem 2. When f and g are integrable over [a,b], the definite integral satisfies the following rules:
(1) ∫baf(x)dx=−∫abf(x)dx
(2) ∫aaf(x)dx=0
(3) ∫ba(kf(x)±g(x))dx=k∫baf(x)dx+∫bag(x)dx
(4) ∫baf(x)dx+∫cbf(x)dx=∫caf(x)dx
(5) If f has maximum value maxf and minimum value minf on [a,b], then (minf)⋅(b−a)≤∫baf(x)dx≤(maxf)⋅(b−a)
(6) If f(x)≥g(x) on [a,b] then ∫baf(x)dx≥∫bag(x)dx
Reference is here:
https://product.kyobobook.co.kr/detail/S000003155860
Thomas' Calculus | Thomas - 교보문고
Thomas' Calculus |
product.kyobobook.co.kr