Partial Order, Total Order

2024. 12. 17. 15:24·Mathematics/Set Theory

Partial Order

Definition 1. A relation $\leq$ on a set $A$ is called a partial order relation if and only if the relation $\leq$ is reflexive and transitive on $A$ and antisymmetric on $A$, that is, if $a\leq b$ and $b \leq a$, then $a = b$. A partially ordered set is a pair $(A, \leq)$, where $A$ is a set and $\leq$ is a partial order relation on $A$.

Total order

Definition 2. A total order relation $\leq$ on a set $A$ is a partial order relation such that for any pair of elements $a$ and $b$ in $A$, either $a\leq b$ or $b \leq a$. A totally ordered set is a pair $(A, \leq)$ where $A$ is a set and $\leq$ is a total order relation. 

Well-Ordered

Definition 3. A totally ordered set $(A, \leq)$ is said to be well-ordered if and only if every nonempty subset $B$ of $A$ contains a unique minimal element; that is, if there exists an element $b \in B$ such that $b \leqq x$ for every $x \in B$. If $(A, \leq)$ is a well-ordered set, then the relation $\leq$ is called a well-order relation.
저작자표시 (새창열림)
'Mathematics/Set Theory' 카테고리의 다른 글
  • Partition
  • Indexed Families of Sets
  • Equivalence Relation
  • Relation
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (283) N
      • Mathematics (188) N
        • Calculus (55)
        • ODE (1) N
        • Set Theory (13)
        • Real analysis (37)
        • Linear Algebra (61)
        • Number Thoery (11)
        • Abstract Algebra (1)
        • Probability (6)
        • Writing (2)
        • Problems (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Partial Order, Total Order
상단으로

티스토리툴바