Curve
Definition 1. We call the vector function r:(a,b)→R3r:(a,b)→R3 a curve. We can parametrize curves by r(t)=⟨f(t),g(t),h(t)⟩r(t)=⟨f(t),g(t),h(t)⟩ where t∈(a,b)t∈(a,b).
Velocity, Speed, Unit Tangent Vector
Definition 2. Let rr be a curve. Then
(1) v(t)=drdtv(t)=drdt is the velocity vector or the tangent vector of rr,
(2) |v||v| is the speed of rr,
(3) T=v|v|T=v|v| is the unit tangent vector.
(4) the tangent line is the line passing through r(t)r(t) in the direction r′(t)r′(t).
Simple Curve
Definition 3. The curve rr is simple if it has no further self-intersections; that is, if t1,t2∈(a,b),t1≠t2t1,t2∈(a,b),t1≠t2, then r(t1)≠r(t2).r(t1)≠r(t2). 1
Limit and Continuity of Curves
Definition 4. Let r(t)=⟨f(t),g(t),h(t)⟩r(t)=⟨f(t),g(t),h(t)⟩ be a curve with domain DD, and let L∈R3L∈R3. We say that rr has limit LL as tt approaches t0t0 and write limt→t0r(t)=Llimt→t0r(t)=L if, for every number ϵ>0ϵ>0, there exists a corresponding number δ>0δ>0 such that for all t∈Dt∈D |r(t)−L|<ϵ whenever 0<|t−t0|<δ.|r(t)−L|<ϵ whenever 0<|t−t0|<δ.
Definition 5. A curve r(t)r(t) is continuous at a point t=t0t=t0 in its domain if limt→t0r(t)=r(t0).limt→t0r(t)=r(t0). The curve is continuous if it is continuous at every point in its domain.
Theorem 1
Theorem 1. Let r(t)=⟨f1(t),f2(t),f3(t)⟩r(t)=⟨f1(t),f2(t),f3(t)⟩ be a curve with differentiable functions f1,f2,f3f1,f2,f3. Then limt→t0r(t) exists ⟺∀j∈{1,2,3},limt→t0fi(t) exists. limt→t0r(t) exists ⟺∀j∈{1,2,3},limt→t0fi(t) exists. Moreover, limt→t0r(t)=⟨limt→t0f1(t),limt→t0f2(t),limt→t0f3(t)⟩.limt→t0r(t)=⟨limt→t0f1(t),limt→t0f2(t),limt→t0f3(t)⟩.
Proof. (⟹)(⟹) Let limt→t0r(t)=L=⟨L1,L2,L3⟩limt→t0r(t)=L=⟨L1,L2,L3⟩. Then ∀ϵ,∃δ>0∀ϵ,∃δ>0 such that |r(t)−L|<ϵ|r(t)−L|<ϵ whenever 0<|t−t0|<δ0<|t−t0|<δ. This means that |fi(t)−Li|<ϵ,∀i|fi(t)−Li|<ϵ,∀i whenever 0<|t−t0|<δ0<|t−t0|<δ. Thus limits of each component exist and limt→t0fi(t)=Li,∀ilimt→t0fi(t)=Li,∀i.
(⟸)(⟸) Suppose that limt→t0fi(t)=Li,∀ilimt→t0fi(t)=Li,∀i. Then ∀ϵ>0,∃δi∀ϵ>0,∃δi such that |fi(t)−Li|<ϵ√3|fi(t)−Li|<ϵ√3 whenever 0<|t−t0|<δi. Take δ=min{δ1,δ2,δ3}. If L=⟨L1,L2,L3⟩, then we have |r(t)−L|≤√3∑i=1(fi(t)−Li)2<√ϵ33⋅3=ϵ whenever 0<|t−t0|<δ.◼
Differentiability of Curves
Definition 6. The curve r(t)=⟨f(t),g(t),h(t)⟩ has a derivative (is differentiable) at t if f,g and h have derivatives at t. The derivative is the curve r′(t)=drdt=limΔt→0r(t+Δt)−r(t)Δt=⟨f′(t),g′(t),h′(t)⟩. The curve is differentiable if it is differentiable at every point of its domain.
Theorem 1의 존재로 인해 우리는 곡선의 극한, 연속, 미분가능성은 component-wise하게 정의할 수 있다. 때문에 각 component function인 scalar function들이 극한을 가지는지, 연속인지, 미분가능한지 체크해서 취합해주면 된다.
Smooth
Definition 7. The curve r is smooth if the velocity vector, i.e., the velocity of r, that is, v=drdt is continuous and never 0.
속도가 영벡터가 된다면 곡선을 따라 움직이는 입자가 멈췄다가 다시 움직인다고 물리적으로 해석할 수 있다. 그러면 말그대로 부드럽지 않고 방향을 전환하여 곡선이 꺾이는 등의 불상사가 발생할 수도 있다. 때문에 이러한 상황이 발생하지 않는 곡선을 smooth하다고 말한다.
Length
Definition 8. The length of a smooth curve r(t)=⟨f(t),g(t),h(t)⟩,a≤t≤b, that is traced exactly once as t increases from t=a to t=b, is L=∫ba|v|dt=∫ba√(dxdt)2+(dydt)2+(dzdt)2dt.
곡선의 '길이'로 생각할 수도 있고, 물리적으로는 곡선을 따라 움직이는 입자의 '이동거리'라고 생각할 수 있다. 이 정의에 근거해서 arc length parameter s를 정의하자.
Arc Length Parameter
Definition 9. If we choose a base point P(t0) on a smooth curve C parametrized by t, each value of t determines a point P(t)=(f(t),g(t),h(t)) on C and a directed distance s(t)=∫tt0|v(τ)|dτ, measured along C from the base point. We call s an arc length parameter for the curve.
Integrals
Definition 10. The definite integral of a continuous curve r(t)=⟨f(t),g(t),h(t)⟩ is defined by ∫bar(t)dt=⟨∫baf(t)dt,∫bag(t)dt,∫bah(t)dt⟩. R(t) is antiderivative of r(t) if R′(t)=r(t). We use the notation ∫r(t)dt=R(t)+C for some constant vector C.