Curve
Definition 1. We call the vector function r:(a,b)→R3 a curve. We can parametrize curves by r(t)=⟨f(t),g(t),h(t)⟩ where t∈(a,b).
Velocity, Speed, Unit Tangent Vector
Definition 2. Let r be a curve. Then
(1) v(t)=drdt is the velocity vector or the tangent vector of r,
(2) |v| is the speed of r,
(3) T=v|v| is the unit tangent vector.
(4) the tangent line is the line passing through r(t) in the direction r′(t).
Simple Curve
Definition 3. The curve r is simple if it has no further self-intersections; that is, if t1,t2∈(a,b),t1≠t2, then r(t1)≠r(t2). 1
Limit and Continuity of Curves
Definition 4. Let r(t)=⟨f(t),g(t),h(t)⟩ be a curve with domain D, and let L∈R3. We say that r has limit L as t approaches t0 and write limt→t0r(t)=L if, for every number ϵ>0, there exists a corresponding number δ>0 such that for all t∈D |r(t)−L|<ϵ whenever 0<|t−t0|<δ.
Definition 5. A curve r(t) is continuous at a point t=t0 in its domain if limt→t0r(t)=r(t0). The curve is continuous if it is continuous at every point in its domain.
Theorem 1
Theorem 1. Let r(t)=⟨f1(t),f2(t),f3(t)⟩ be a curve with differentiable functions f1,f2,f3. Then limt→t0r(t) exists ⟺∀j∈{1,2,3},limt→t0fi(t) exists. Moreover, limt→t0r(t)=⟨limt→t0f1(t),limt→t0f2(t),limt→t0f3(t)⟩.
Proof. (⟹) Let limt→t0r(t)=L=⟨L1,L2,L3⟩. Then ∀ϵ,∃δ>0 such that |r(t)−L|<ϵ whenever 0<|t−t0|<δ. This means that |fi(t)−Li|<ϵ,∀i whenever 0<|t−t0|<δ. Thus limits of each component exist and limt→t0fi(t)=Li,∀i.
(⟸) Suppose that limt→t0fi(t)=Li,∀i. Then ∀ϵ>0,∃δi such that |fi(t)−Li|<ϵ√3 whenever 0<|t−t0|<δi. Take δ=min{δ1,δ2,δ3}. If L=⟨L1,L2,L3⟩, then we have |r(t)−L|≤√3∑i=1(fi(t)−Li)2<√ϵ33⋅3=ϵ whenever 0<|t−t0|<δ.◼
Differentiability of Curves
Definition 6. The curve r(t)=⟨f(t),g(t),h(t)⟩ has a derivative (is differentiable) at t if f,g and h have derivatives at t. The derivative is the curve r′(t)=drdt=limΔt→0r(t+Δt)−r(t)Δt=⟨f′(t),g′(t),h′(t)⟩. The curve is differentiable if it is differentiable at every point of its domain.
Theorem 1의 존재로 인해 우리는 곡선의 극한, 연속, 미분가능성은 component-wise하게 정의할 수 있다. 때문에 각 component function인 scalar function들이 극한을 가지는지, 연속인지, 미분가능한지 체크해서 취합해주면 된다.
Smooth
Definition 7. The curve r is smooth if the velocity vector, i.e., the velocity of r, that is, v=drdt is continuous and never 0.
속도가 영벡터가 된다면 곡선을 따라 움직이는 입자가 멈췄다가 다시 움직인다고 물리적으로 해석할 수 있다. 그러면 말그대로 부드럽지 않고 방향을 전환하여 곡선이 꺾이는 등의 불상사가 발생할 수도 있다. 때문에 이러한 상황이 발생하지 않는 곡선을 smooth하다고 말한다.
Length
Definition 8. The length of a smooth curve r(t)=⟨f(t),g(t),h(t)⟩,a≤t≤b, that is traced exactly once as t increases from t=a to t=b, is L=∫ba|v|dt=∫ba√(dxdt)2+(dydt)2+(dzdt)2dt.
곡선의 '길이'로 생각할 수도 있고, 물리적으로는 곡선을 따라 움직이는 입자의 '이동거리'라고 생각할 수 있다. 이 정의에 근거해서 arc length parameter s를 정의하자.
Arc Length Parameter
Definition 9. If we choose a base point P(t0) on a smooth curve C parametrized by t, each value of t determines a point P(t)=(f(t),g(t),h(t)) on C and a directed distance s(t)=∫tt0|v(τ)|dτ, measured along C from the base point. We call s an arc length parameter for the curve.
Integrals
Definition 10. The definite integral of a continuous curve r(t)=⟨f(t),g(t),h(t)⟩ is defined by ∫bar(t)dt=⟨∫baf(t)dt,∫bag(t)dt,∫bah(t)dt⟩. R(t) is antiderivative of r(t) if R′(t)=r(t). We use the notation ∫r(t)dt=R(t)+C for some constant vector C.