Theorem 1. If w=f(x,y) is differentiable and if x=x(t),y=y(t) are differentiable functions of t, then the composition w=f(x(t),y(t)) is a differentiable function of t and dwdt=∂f∂xdxdt+∂f∂ydydt.
Proof. Let Δx,Δy and Δw be the increments that result from changing t from t0 to t0+Δt. Since f is differentiable, Δw=∂f∂x(x(t0),y(t0))Δx+∂f∂y(x(t0),y(t0))Δy+ε1Δx+ε2Δy, where ε1,ε2→0 as Δx,Δy→0. Let's divide this equation through by Δt and let Δt approach zero. Then the division gives ΔwΔt=∂f∂x(x(t0),y(t0))ΔxΔt+∂f∂y(x(t0),y(t0))ΔyΔt+ε1ΔxΔt+ε2ΔyΔt. Letting Δt approach zero gives dwdt(t0)=limΔt→0ΔwΔt=∂f∂x(x(t0),y(t0))dxdt(t0)+∂f∂y(x(t0),y(t0))dydt(t0)+0⋅dxdt(t0)+0⋅dydt(t0).■
위 정리의 합성 함수에서 x,y는 f의 'intermediate variable'이고, t야말로 independent variable이라고 할 수 있다. 이러한 관계를 아래와 같은 diagram으로 그릴 수 있는데, 이를 dependency diagram이라고 부른다. 기억할 때는 diagram의 각 line을 따라 곱해주고 모두 더해주면 된다.
Theorem 2. If w=f(x,y,z) is differentiable and x,y, and z are differentiable functions of t, then w is a differentiable function of t and dwdt=∂f∂xdxdt+∂f∂ydydt+∂f∂zdzdt.
Theorem 3. Suppose that w=f(x,y,z),x=g(r,s),y=h(r,s) and z=k(r,s). If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas ∂w∂r=∂f∂x∂x∂r+∂f∂y∂y∂r+∂f∂z∂z∂r∂w∂s=∂f∂x∂x∂s+∂f∂y∂y∂s+∂f∂z∂z∂s.
Theorem 4. Suppose that w=f(x1,x2,...,xn) is a differentiable function of the n variables x1,x2,...,xn and each one is a differentiable function of the m variables t1,t2,...,tm. Then w is a differentiable function of t1,t2,...,tm and ∂w∂ti=∂f∂x1∂x1∂ti+∂f∂x2∂x2∂ti+⋯+∂f∂xn∂xn∂ti for each i=1,2,...,m.
위와 같이 Chain Rule을 일반화 하여 작성할 수 있고, (∂f∂x1,∂f∂x2,...,∂f∂xn)⋅(∂x1∂ti,∂x2∂ti,...,∂xn∂ti)와 같은 mnemonic으로, 즉 두 벡터의 내적으로 쉽게 기억할 수 있다. 이때 왼쪽 벡터는 사실상 ∇f이다.