Fundamental Theorem of Line Integral
Theorem 1. Let be a smooth curve joining the point to the point in the plane or in space and parametrized by . Let be a differentiable function with a continuous gradient vector on a domain containing . Then
Proof. Suppose that and and represent and , respectively. Then
가 일변수에서 과 비슷한 역할을 수행한다고 이해하면, 사실상 Fundamental Theorem of Calculus와 동일한 내용의 정리이다.