Union
Definition 1. Let be a family of sets. The union of the sets in , denoted by is the set of all elements that are in for some . That is,
Intersection
Definition 2. Let be a family of sets. The intersection of the sets in , denoted by is the set of all elements that are in for all . That is,
Theorem 1
Theorem 1.
Proof. (a) Suppose that there exists such that . Then there is some such that and this implies that such that . This assertation is a contradiction, so there does not exist such that .
(b) Let define for each . From (a) and De Morgan's Theroem, we have
직관적으로 이해해보자. 합집합은 아무것도 없는 곳에서 하나씩 데리고 온다고 생각해야 한다. 따라서 아무것도 가져올 게 없으면 당연히 공집합이다. 반면 교집합은 이미 주어져 있는 전체에서 조금씩 긁어낸다고 생각해야 한다. 이때 아무것도 긁어낼 게 없다면 당연히 처음 있던 그대로, 즉 전체 집합이다.
De Morgan's Theorem
Theorem 2.