Divergent Sequences

2025. 5. 7. 10:12·Mathematics/Real analysis

Divergent Sequences

Definition 15.1. Let $\{a_n\}$ be a sequence. We say that $\{a_n\}$ diverges to infinity (or minus infinity) and write \[ \lim_{n \to \infty} a_n = \infty \quad (\lim_{n \to \infty} a_n = -\infty) \] if for every real number $M$, there exists a positive integer $N$ such that if $n \geq N$, then $a_n > M$ ($a_n < M$).

Theorem 15.2

Theorem 15.2. Let $\{a_n\}$ and $\{b_n\}$ be sequences such that \[ \lim_{n \to \infty} a_n = \infty = \lim_{n \to \infty} b_n. \] Then \[ \lim_{n \to \infty} (a_n + b_n) = \infty. \]
Proof. Let $M \in \mathbb{R}$. Then $\exists N_1, N_2 \in \mathbb{P}$ such that $a_n > \frac{M}{2}, \forall n \geq N_1$ and $b_n > \frac{M}{2}, \forall n \geq N_2$. Let $N = \max \{N_1, N_2 \}$. Then $$a_n + b_n > \frac{M}{2} + \frac{M}{2} = M, \forall n \geq N.$$ Thus $\lim_{n \to \infty} (a_n + b_n) = \infty$. $\blacksquare$

Squeeze Theorem

Theorem 15.3 (Squeeze Theorem). Let $\{a_n\}$ and $\{b_n\}$ be sequences such that \[ a_n \leq b_n \quad \text{for every positive integer } n. \] If \[ \lim_{n \to \infty} b_n = -\infty, \] then \[ \lim_{n \to \infty} a_n = -\infty. \]
Proof. Let $M \in \mathbb{R}$. Then $\exists N \in \mathbb{P}$ such that $b_n < M, \forall n \geq N$. Then $a_n \leq b_n < M, \forall n \geq N$, therfore $\lim_{n \to \infty} a_n = - \infty$. $\blacksquare$
저작자표시 (새창열림)
'Mathematics/Real analysis' 카테고리의 다른 글
  • Real Exponents
  • Monotone Sequences
  • Bounded Sequences
  • Subsequences
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Divergent Sequences
상단으로

티스토리툴바