The Bolzano-Weierstrass Theorem

2025. 5. 10. 23:53·Mathematics/Real analysis

The Bolzano-Weierstrass Theorem

Theorem 18.1 (The Bolzano-Weierstrass Theorem). Every bounded real sequence has a convergent subsequence. 
Proof. Let $\{ a_n \}$ be a bounded real sequence. Then there exists a closed interval $[ c, d ]$ such that $a_n \in [ c, d ], \forall n \in \mathbb{P}$. 
Consider the two subinterval, $\left[ c, \frac{c+d}{2} \right], \left[ \frac{c+d}{2}, d \right]$. One of these intervals must contain infinitely many terms of $\{ a_n \}$. We denote this interval by $[ c_1, d_1 ]$.
We repeat this process to $[c_1, d_1]$. One of the subintervals $\left[ c_1, \frac{c_1 + d_1}{2} \right], \left[ \frac{c_1 + d_1}{2}, d_1 \right]$ must contain infinitely many terms of $\{ a_n \}$. We denote this interval by $[c_2, d_2]$. Continuing this process, we obtain the sequence of closed intervals such that $$[c_1, d_1] \supset [c_2, d_2] \supset \cdots, \\ d_k - c_k = \frac{d - c}{2^k}, \forall k \in \mathbb{P}$$ and each interval $[ c_k, d_k ]$ contains $a_n$ for infinitely many positive integer $n$. 
Choose $a_{n_1} \in [c_1, d_1]$. Since $[c_2, d_2]$ contains infinitely many terms of $\{ a_n \}$, we can choose $n_2 > n_1$ such that $a_{n_2} \in [c_2, d_2]$. Continuing the process, we obtain elements $a_{n_1}, a_{n_2}, ...$ satisfying $a_{n_k} \in [c_k, d_k], \forall k \in \mathbb{P}$ and $n_1 < n_2 < \cdots$. Then $\{ a_{n_k} \}$ is a subsequence of $\{a_n\}$.
Note that $\{ c_k \}$ is increasing and $\{ d_k \}$ is decreasing, and both are bounded. Then $$\lim_{n \to \infty} c_k = L \quad \text{ and } \quad \lim_{n \to \infty} d_k = M$$ by Theorem 16.2 and $$L - M = \lim_{k \to \infty} (d_k - c_k) = \lim_{k \to \infty} \frac{d - c}{2^k} = \lim_{k \to \infty} (d-c) \left( \frac{1}{2} \right)^k = 0 \\ \Longrightarrow L = M$$ by Corollary 12.4, Theorem 12.6 and Theorem 16.3. 
Since $c_k \leq a_{n_k} \leq d_k$ for all positive integer $k$, $$\lim_{k \to \infty} a_{n_k} = L$$ by Theorem 14.3. Thus a subseqence $\{ a_{n_k} \}$ of $\{ a_n \}$ is convergent. $\blacksquare$

 

저작자표시 (새창열림)
'Mathematics/Real analysis' 카테고리의 다른 글
  • The lim sup and lim inf of Bounded Sequences
  • The Cauchy Condition
  • Real Exponents
  • Monotone Sequences
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (262)
      • Mathematics (174)
        • Real analysis (21)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (69)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (13)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
The Bolzano-Weierstrass Theorem
상단으로

티스토리툴바