Power Series

2025. 5. 28. 21:56·Mathematics/Real analysis

Power Series

Definition 27.1. Let \( t \) be a fixed real number. A power series (expanded about \( t \)) is an infinite series of the form \[ \sum_{n=0}^{\infty} a_n (x - t)^n \] where \( \{a_n\}_{n=0}^{\infty} \) is a sequence and \( x \) is a real number. \([(x - t)^0\) is defined to be 1.]

Theorem 27.2

Theorem 27.2. Let \( \sum_{n=0}^{\infty} a_n (x - t)^n \) be a power series. Let \[ L = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}. \] Let \[ R = \begin{cases} 0 & \text{if } L = \infty, \\ \frac{1}{L} & \text{if } 0 < L < \infty, \\ \infty & \text{if } L = 0. \end{cases} \] Then the power series \( \sum_{n=0}^{\infty} a_n (x - t)^n \) converges absolutely if \( |x - t| < R \) and diverges if \( |x - t| > R \).
Proof. Suppose that $\{ |a_n|^{\frac{1}{n}} \}$ is unbounded. Then $L = \infty$ by Definition 21.2, and $R = 0$. If $|x - t| > 0$, then $|a_n|^{\frac{1}{n}} > \frac{1}{|x - t|}$ for infinitely many positive integers $n$. ($\{ |a_n|^{\frac{1}{n}} \}$ is unbounded.) Thus we have $|a_n(x-t)^n| > 1$ for infinitely many positive integers $n$, so that $\sum_{n=0}^{\infty} a_n(x-t)^n$ diverges. (($\because$) If not, then $\lim_{n \to \infty} a_n(x-t)^n = 0$, so that $1 \leq 0$. $\bigotimes$) 
Suppose that $\{|a_n|^{\frac{1}{n}} \}$ is bounded. Then $\limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = L$ is a real number. Assume that $L > 0$. By the root test, $\sum_{n=0}^{\infty} a_n(x-t)^n$ converges if $\limsup_{n \to \infty} |a_n(x-t)^n|^{\frac{1}{n}} < 1$ and diverges if $\limsup_{n \to \infty} |a_n(x-t)^n|^{\frac{1}{n}} > 1$. 
Note that $$\limsup_{n \to \infty} |a_n(x-t)^n|^{\frac{1}{n}} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} |x-t| \\ = |x-t| \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = |x-t|L$$ by Theorem 20.8. Thus the power series $\sum_{n=0}^{\infty} a_n(x-t)^n$ converges absolutely if $|x-t| < R$ and diverges if $|x-t| > R$. 
Assume that $L = 0$. Then for any rean number $x$, $$\limsup_{n \to \infty} |a_n(x-t)^n|^{\frac{1}{n}} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} |x-t| \\ = |x-t| \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = |x-t|L = 0$$ by Theorem 20.8. Thus the power series $\sum_{n=0}^{\infty} a_n(x-t)^n$ converges absolutely for any $x$ by the root test. $\blacksquare$

Exercise 27.2

Exercise 27.2. Let \( \sum_{n=0}^{\infty} a_n (x - t)^n \) be a power series. Let \[ L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \] Let \[ R = \begin{cases} 0 & \text{if } L = \infty, \\ \frac{1}{L} & \text{if } 0 < L < \infty, \\ \infty & \text{if } L = 0. \end{cases} \] Then the power series \( \sum_{n=0}^{\infty} a_n (x - t)^n \) converges absolutely if \( |x - t| < R \) and diverges if \( |x - t| > R \).

Radius of Convergence

Definition 27.3. The value \( R \) of Theorem 27.2 is called the radius of convergence of the power series \( \sum_{n=0}^{\infty} a_n (x - t)^n \).
저작자표시 (새창열림)
'Mathematics/Real analysis' 카테고리의 다른 글
  • Limits of Real-Valued Functions
  • Conditional Convergence
  • Absolute Convergence
  • Infinite Series
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (282) N
      • Mathematics (187) N
        • Real analysis (37) N
        • Linear Algebra (61)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Power Series
상단으로

티스토리툴바