Continuity

2025. 5. 30. 01:09·Mathematics/Real analysis
목차
  1. Continuity
  2. Theorem 33.2
  3. Theorem 33.3
  4. Theorem 33.4

Continuity

Definition 33.1. Let ff be a function from X⊂RX⊂R into RR. We say that ff is continuous at aa if either
(i) aa is an accumulation point of XX and limx→af(x)=f(a)limx→af(x)=f(a).
(ii) aa is not an accumulation point of XX.
We say that ff is continuous on [a,b][a,b] if ff is continuous at every point of [a,b][a,b] (at the end-points aa and bb we demand that limx→a+f(x)=f(a)limx→a+f(x)=f(a) and limx→b−f(x)=f(b)limx→b−f(x)=f(b).)

Theorem 33.2

Theorem 33.2. If ff and gg are continuous at aa, then each of the following functions is also continuous at aa:
(i) |f||f|
(ii) cfcf for each c∈Rc∈R
(iii) f+gf+g
(iv) f−gf−g
(v) f⋅gf⋅g
(vi) fgfg, provided that g(a)≠0g(a)≠0
Proof. 

Theorem 33.3

Theorem 33.3. Let ff be a function from X⊂RX⊂R into RR and let a∈Xa∈X. Then ff is continuous at aa ⟺⟺ for every ε>0ε>0, there exists δ>0δ>0 such that if |x−a|<δ|x−a|<δ and x∈Xx∈X, then |f(x)−f(a)|<ε|f(x)−f(a)|<ε.
Proof. (⟹⟹) Suppose that ff is continuous at aa. If aa is an accumulation point of XX, then limx→af(x)=f(a)limx→af(x)=f(a). Then ∀ε>0,∃δ>0∀ε>0,∃δ>0 such that x∈X and 0<|x−a|<δ⟹|f(x)−f(a)|<εx∈X and 0<|x−a|<δ⟹|f(x)−f(a)|<ε. If x∈Xx∈X and |x−a|<δ|x−a|<δ, then either x=ax=a or 0<|x−a|<δ0<|x−a|<δ. If x=ax=a, then |f(x)−f(a)|=0<ε|f(x)−f(a)|=0<ε. If 0<|x−a|<δ0<|x−a|<δ, then |f(x)−f(a)|<ε|f(x)−f(a)|<ε by the assumption. In either case, |f(x)−f(a)|<ε.|f(x)−f(a)|<ε.
If xx is not an accumulation point of XX, then ∃δ>0∃δ>0 such that {x∈X|0<|x−a|<δ}=∅{x∈X|0<|x−a|<δ}=∅. If x∈Xx∈X and |x−a|<δ|x−a|<δ, then x=ax=a. For any ε>0ε>0, |f(x)−f(a)|=0<ε|f(x)−f(a)|=0<ε. 
(⟸⟸) Suppose that for every ε>0ε>0, there exists δ>0δ>0 such that if |x−a|<δ|x−a|<δ and x∈Xx∈X, then |f(x)−f(a)|<ε|f(x)−f(a)|<ε. If aa is not an accumulation point of XX, then ff is continuous at aa. If aa is an accumulation point of XX, then by the assumption, ∃δ>0∃δ>0 such that if x∈Xx∈X and |x−a|<δ|x−a|<δ, then |f(x)−f(a)|<ε|f(x)−f(a)|<ε. Therefore, if x∈Xx∈X and 0<|x−a|<δ0<|x−a|<δ, then |f(x)−f(a)|<ε|f(x)−f(a)|<ε. Thus limx→af(x)=f(a)limx→af(x)=f(a), so that ff is continuous at aa. ■◼

Theorem 33.4

Theorem 33.4. If gg is continuous at aa and ff is continuous at g(a)g(a), then f∘gf∘g is continuous at aa.
Proof. By Theorem 33.3, ∀ε>0,∃δ1>0∀ε>0,∃δ1>0 such that if |x−g(a)|<δ1|x−g(a)|<δ1 ⟹⟹ |f(x)−f(g(a))|<ε|f(x)−f(g(a))|<ε, and ∃δ>0∃δ>0 such that |x−a|<δ|x−a|<δ ⟹⟹ |g(x)−g(a)|<δ1|g(x)−g(a)|<δ1. Thus if |x−a|<δ|x−a|<δ, then |g(x)−g(a)|<δ1|g(x)−g(a)|<δ1, which implys that |f(g(x))−f(g(a))|<ε|f(g(x))−f(g(a))|<ε. Thus f∘gf∘g is continuous at aa by Theorem 33.3. ■◼
저작자표시 (새창열림)
  1. Continuity
  2. Theorem 33.2
  3. Theorem 33.3
  4. Theorem 33.4
'Mathematics/Real analysis' 카테고리의 다른 글
  • Metric Space
  • Heine-Borel Theorem
  • Limits of Real-Valued Functions
  • Conditional Convergence
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (283) N
      • Mathematics (188) N
        • Calculus (55)
        • ODE (1) N
        • Set Theory (13)
        • Real analysis (37)
        • Linear Algebra (61)
        • Number Thoery (11)
        • Abstract Algebra (1)
        • Probability (6)
        • Writing (2)
        • Problems (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Continuity

개인정보

  • 티스토리 홈
  • 포럼
  • 로그인
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.