The Relative Metric

2025. 6. 22. 22:50·Mathematics/Real analysis
목차
  1. Relative Metric
  2. Remark
  3. Theorem 41.2
  4. Corollary 41.3

Relative Metric

Definition 41.1. Let (M,d)(M,d) be a metric space and let XX be a subset of MM. The function d′d′ defined by d′(x,y)=d(x,y)for x,y∈Xd′(x,y)=d(x,y)for x,y∈X is called the metric for XX relative to MM or more simply, the relative metric for XX.

Remark

Remark. Keeping the notation of Definition 41.1, an open ball in XX of radius εε centered at aa is the set {x∈X|d′(x,a)<ε}{x∈X|d′(x,a)<ε} which we denote BXε(a)BεX(a). Letting Bε(a)={x∈M|d(x,a)<ε}Bε(a)={x∈M|d(x,a)<ε} be the open ball in MM of radius εε centered at aa, we see that BXε(a)=Bε(a)∩X.BεX(a)=Bε(a)∩X.

Theorem 41.2

Theorem 41.2. Let MM be a metric space and let XX be a subset of MM with the relative metric. Let YY be a subset of XX.
(i) YY is open in XX if and only if Y=X∩UY=X∩U, where UU is open in MM.
(ii) YY is closed in XX if and only if Y=X∩CY=X∩C, where CC is closed in MM.
Proof. (i) (⟹⟹) Suppose that YY is open in XX. ∀y∈Y,∃εy>0∀y∈Y,∃εy>0 such that BXεy(y)⊂YBεyX(y)⊂Y. Let U=⋃y∈YBεy(y)U=⋃y∈YBεy(y). Then UU is open in MM. 
Thus X∩U=X∩(⋃y∈YBεy(y))=⋃y∈Y(X∩Bεy(y))=⋃y∈YBXεy(y).X∩U=X∩(⋃y∈YBεy(y))=⋃y∈Y(X∩Bεy(y))=⋃y∈YBεyX(y). Let y∈Yy∈Y. Since YY is open in XX, ∃εy>0∃εy>0 such that BXεy(y)⊂YBεyX(y)⊂Y. Then ⋃y∈YBXεy(y)⊂Y⋃y∈YBεyX(y)⊂Y. 
Note that y∈BXεy(y)⊂⋃y∈YBXεy(y)y∈BεyX(y)⊂⋃y∈YBεyX(y). Thus Y=⋃y∈YBXεy(y)Y=⋃y∈YBεyX(y), which means that Y=X∩UY=X∩U.
(⟸⟸) Suppose that Y=X∩UY=X∩U, where UU is open in MM. Let y∈Yy∈Y. Then ∃ε>0∃ε>0 such that Bε(y)⊂UBε(y)⊂U. Note that y∈X∩Bε(y)=BXε(y)⊂X∩U=Yy∈X∩Bε(y)=BεX(y)⊂X∩U=Y. Thus YY is open in XX.
(ii) (⟹⟹) Suppose that YY is closed in XX. Note that ¯¯¯¯YY¯ is closed in MM. Put C=¯¯¯¯YC=Y¯. Clearly, we have Y⊂X∩CY⊂X∩C. Let y∈X∩Cy∈X∩C. Then ∃{yn}∃{yn} such that yn∈Y,∀nyn∈Y,∀n and yn→yyn→y. Since YY is closed in XX, y∈Yy∈Y, which means that Y=X∩CY=X∩C. 
(⟸⟸) Suppose that Y=X∩CY=X∩C, where CC is closed in MM. Let yy be a limit point of YY. Then ∃{yn}∃{yn} such that yn∈Y,∀nyn∈Y,∀n and yn→yyn→y. Since yn∈C,∀nyn∈C,∀n, yy is a limit point of CC. Since CC is closed, y∈Cy∈C. Since yn∈X,∀nyn∈X,∀n and yn→yyn→y, y∈Xy∈X. Thus y∈X∩X=Yy∈X∩X=Y, which means that YY is closed in XX. ■◼  

Corollary 41.3

Corollary 41.3. (i) Let XX be an open subset of a metric space MM and let Y⊂XY⊂X. Then YY is open in XX ⟺⟺ if YY is open in MM.
(ii) Let XX be a closed subset of a metric space MM and let Y⊂XY⊂X. Then YY is closed in XX ⟺⟺ YY is closed in MM.
Proof. (⟹⟹) Suppose that YY is open in XX. By Theorem 41.2, Y=X∩UY=X∩U for some open subset UU of MM. Since XX and YY are open in MM, so is YY. 
(⟸⟸) Suppose that YY is open in MM. Let y∈Yy∈Y. Then ∃ε>0∃ε>0 such that Bε(y)⊂Y⊂XBε(y)⊂Y⊂X. Note that BXε(y)=X∩Bε(y)⊂X∩Y=YBεX(y)=X∩Bε(y)⊂X∩Y=Y. Thus YY is open in XX. ■◼
저작자표시 (새창열림)
  1. Relative Metric
  2. Remark
  3. Theorem 41.2
  4. Corollary 41.3
'Mathematics/Real analysis' 카테고리의 다른 글
  • The Bolzano-Weierstrass Characterization of a Compact Metric Space
  • Compact Metric Space
  • Continuous Functions on Metric Spaces
  • Open Sets
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (283)
      • Mathematics (188)
        • Calculus (55)
        • ODE (1)
        • Set Theory (13)
        • Real analysis (37)
        • Linear Algebra (61)
        • Number Thoery (11)
        • Abstract Algebra (1)
        • Probability (6)
        • Writing (2)
        • Problems (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
The Relative Metric

개인정보

  • 티스토리 홈
  • 포럼
  • 로그인
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.