Reduced Row Echelon Form
Definition 1. A matrix is said to be in row echelon form (REF) if the following conditions are satisfied:
(1) Any row containing a nonzero entry precedes any row in which all the entries are zero.
(2) The first nonzero entry in each row is , called the leading , or the pivot.
(3) Below each leading is a column of zeros.
A matrix is said to be in reduced row echelon form (RREF) if it is in row echelon form and satisfies the following additional condition:
(4) Each column containing a leading has zeros everywhere else.
쉽게 생각해서 REF는 upper triangle matrix와 유사한 꼴이고, 더 나아가 RREF는 leading 을 포함하는 열의 성분을 싹 다 으로 만들어 버린 행렬이다.
Gauss-Jordan Elimination
Definition 2. The procedure for reducing an augmented matrix corresponding to the system to REF by performing the elementary row operations is called Gaussian elimination. This procedure is also called forward elimination.
Furthermore, if this procedure reduces to RREF, then it is called Gauss-Jordan elimination, or backward substitution.
Gauss-Jordan elimination, 즉 가우스-조르당 소거법은 주어진 임의의 행렬을 RREF로 만드는 과정을 일반적으로 통칭하기도 한다. 그러나 정의에서 연립 방정식 를 끼워 넣은 이유는, 실제로 가우스-조르당 소거법이 선형 연립 방정식의 해를 구하는 데 매우 효과적인 방법이기 때문이다. 아래 Theorem 1과 Corollary 1에서 알 수 있듯이 가우스-조르당 소거법에 의해 모든 행렬은 반드시 유일한 RREF로 변환할 수 있다.
Theorem 1
Theorem 1. Gaussian elimination transforms any matrix into its RREF.
Proof. We may apply the induction to , where . If , then is the RREF of .
Suppose that the theorem is true for for some . Denote , i.e., , where . By the induction hypothesis, can be transformed into its RREF. By means of at most type 2 row operation, we can transform into its RREF.
Theorem 2
Theorem 2. Let such that rank() = , and let be the RREF of . Then the followings hold:
(a) The number of nonzero rows in is .
(b) such that , where is the standard ordered basis vector of .
(c) are linearly independent.
(d) , if , then .
Proof.
(a) Since elementary row operation is rank-preserving and is the RREF of , rank() = . This means that the maximum number of linearly independent rows of is . Clearly zero rows are not the linearly independent rows. Thus the number of nonzero rows in is .
(b) Since rank() = , there is linearly independent columns in . By the definition of RREF, the each columns are same to . Thus for each such that .
(c) Suppose that for some . Since is the RREF of , we denote that , where . Note that . Thus Hence is linearly independent.
(d) Note that , i.e., . Since , .
위 정리는 여러가지 중요한 사실을 포함하고 있다. 간단하게 요약하면, 모든 행렬은 개의 nonzero row들을 가지고 있으며, 다른 행들을 생성하는 개의 linearly independent column들을 가지고 있다. 이때 은 행렬의 rank이다. 즉 행렬의 rank는 그 행렬의 linearly independent column의 개수와 대응되며, 이 column들은 그 행렬의 행들을 생성한다. Corollary 2에 의해 linearly independent row에 대해서도 동일한 결과를 얻음을 알 수 있다.
Corollary
Corollary. The RREF of a matrix is unique.
Proof. Assume that and are the RREF of that rank() = . By Theorem 2, we can write and for some , respectively. Then where .