What Happens to $\det(A)$ If We Perform an Elementary Row Operation on $A$

2023. 10. 9. 15:30·Mathematics/Linear Algebra

What Happens to $\det(A)$ if we perform an elementary row operation on $A$

Theorem 1. Let $A \in M_{n \times n}(F)$ and $B = R(A)$, where $R$ is an elementary row operation. Then the followings hold:
(a) If $R = R_{i \leftrightarrow j}$, then $\det(B) = -\det(A)$.
(b) If $R = R_{ci}$, then $\det(B) = c \cdot \det(A)$.
(c) If $R = R_{i +  cj}$, then $\det(B) = \det(A)$.
저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • The Diagonalization, Eigenvector and Eigenvalue
  • Cramer's Rule
  • Determinant of a Linear Operator
  • Determinant
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
What Happens to $\det(A)$ If We Perform an Elementary Row Operation on $A$
상단으로

티스토리툴바