이 포스트에서 VV는 FF-벡터공간으로 취급한다.
Inner Product
Definition 1. An inner product on VV is a function ⟨⋅,⋅⟩:V×V⟶F⟨⋅,⋅⟩:V×V⟶F, such that ∀x,y,z∈V∀x,y,z∈V and ∀c∈F∀c∈F, the following hold:
(a) ⟨x+z,y⟩=⟨x,y⟩+⟨z,y⟩⟨x+z,y⟩=⟨x,y⟩+⟨z,y⟩.
(b) ⟨cx,y⟩=c⟨x,y⟩⟨cx,y⟩=c⟨x,y⟩.
(c) ¯⟨x,y⟩=⟨y,x⟩¯¯¯¯¯¯¯¯¯¯¯¯¯⟨x,y⟩=⟨y,x⟩
(d) ⟨x,x⟩>0⟨x,x⟩>0 if x≠0x≠0.
Then (V,⟨⋅,⋅⟩)(V,⟨⋅,⋅⟩) is called an inner product space.
일반적으로 내적은 위와 같이 정의되며, 무수히 많은 내적이 존재한다. 익히 알고 있는 벡터의 내적은 수많은 내적 중 하나이며, 예시에 소개되어 있다.
Theorem 1
Theorem 1. Let (V,⟨⋅,⋅⟩)(V,⟨⋅,⋅⟩) be an inner product space. Then ∀x,y,z∈V∀x,y,z∈V and c∈Fc∈F, the following statements are true.
(a) ⟨x,y+z⟩=⟨x,y⟩+⟨x,z⟩⟨x,y+z⟩=⟨x,y⟩+⟨x,z⟩.
(b) ⟨x,cy⟩=¯c⟨x,y⟩⟨x,cy⟩=¯¯c⟨x,y⟩.
(c) ⟨x,0⟩=⟨0,x⟩=0⟨x,0⟩=⟨0,x⟩=0.
(d) ⟨x,x⟩=0⟺x=0⟨x,x⟩=0⟺x=0.
(e) If ⟨x,y⟩=⟨x,z⟩,∀x∈V⟨x,y⟩=⟨x,z⟩,∀x∈V, then y=zy=z.
Proof. (a) ⟨x,y+z⟩=¯⟨y+z,x⟩=¯⟨y,x⟩+⟨z,x⟩=¯⟨y,x⟩+¯⟨z,x⟩=⟨x,y⟩+⟨x,z⟩⟨x,y+z⟩=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⟨y+z,x⟩=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⟨y,x⟩+⟨z,x⟩=¯¯¯¯¯¯¯¯¯¯¯¯¯⟨y,x⟩+¯¯¯¯¯¯¯¯¯¯¯¯⟨z,x⟩=⟨x,y⟩+⟨x,z⟩.
(b) ⟨x,cy⟩=¯⟨cy,x⟩=¯c⟨y,x⟩=¯c¯⟨y,x⟩=¯c⟨x,y⟩⟨x,cy⟩=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯⟨cy,x⟩=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯c⟨y,x⟩=¯¯c¯¯¯¯¯¯¯¯¯¯¯¯¯⟨y,x⟩=¯¯c⟨x,y⟩.
(c) ⟨x,0⟩=⟨x,0+0⟩=⟨x,0⟩+⟨x,0⟩⟨x,0⟩=⟨x,0+0⟩=⟨x,0⟩+⟨x,0⟩. Then ⟨x,0⟩=0⟨x,0⟩=0. Similarly, ⟨0,x⟩=0⟨0,x⟩=0.
(d) If x≠0x≠0, then ⟨x,x⟩>0⟨x,x⟩>0. But since ⟨x,x⟩=0,x=0⟨x,x⟩=0,x=0. If x=0x=0, ⟨x,x⟩=0⟨x,x⟩=0 by (c).
(e) Take x=y−zx=y−z. Then ⟨x,y⟩=⟨x,z⟩⟹⟨y−z,y−z⟩=0⟺y−z=0⟺y=z⟨x,y⟩=⟨x,z⟩⟹⟨y−z,y−z⟩=0⟺y−z=0⟺y=z. ◼■
Remark
Remark. Let (V,⟨⋅,⋅⟩)(V,⟨⋅,⋅⟩) be an inner product space. Let x,y∈Vx,y∈V.
(a) Define ||x||=√⟨x,x⟩||x||=√⟨x,x⟩. Then ||x||||x|| is the norm.
(b) Define d(x,y)=||x−y||d(x,y)=||x−y||. Then dd is the metric.
내적이 주어지면 항상 위와 같이 놈과 거리를 정의할 수 있다. 내적 공간에서 놈과 거리는 위의 정의로 사용한다. 즉 내적 공간이면 놈 공간이자 거리 공간이다. 이와 관련하여 아래와 같은 유용한 부등식과 항등식들이 성립한다.
Theorem 2
Theorem 2. Let (V,⟨⋅,⋅⟩)(V,⟨⋅,⋅⟩) be an inner product space. Then ∀x,y∈V,∀c∈F∀x,y∈V,∀c∈F, the following statements are true.
(a) |⟨x,y⟩|≤||x||||y|||⟨x,y⟩|≤||x||||y||. (Cauchy-Schwarz Inequality)
(b) ||x+y||≤||x||+||y||||x+y||≤||x||+||y||. (Triangle Inequality)
(c) |||x||−||y|||≤||x−y|||||x||−||y|||≤||x−y||. (Reverse Triangle Inequality)
(d) ||x+y||2+||x−y||2=2||x||2+2||y||2||x+y||2+||x−y||2=2||x||2+2||y||2. (Parallelogram Law)
(e) ||x+y||2=||x||2+||y||2||x+y||2=||x||2+||y||2 if xx and yy are orthogonal. (Pythagorean Theorem)
Proof. (a) If y=0y=0, then the result is immediate. Assume that y≠0y≠0. For any c∈Fc∈F we have 0≤||x−cy||2=⟨x−cy,x−cy⟩0≤||x−cy||2=⟨x−cy,x−cy⟩ = ||x||2−¯c⟨x,y⟩−c⟨y,x⟩+|c|2||y||2.||x||2−¯¯c⟨x,y⟩−c⟨y,x⟩+|c|2||y||2. In particular, if we set c=⟨x,y⟩||y||2c=⟨x,y⟩||y||2, then 0≤||x||2−|⟨x,y⟩|2||y||20≤||x||2−|⟨x,y⟩|2||y||2.
(b) ||x+y||2=⟨x+y,x+y⟩=||x||2+2R⟨x,y⟩+||y||2||x+y||2=⟨x+y,x+y⟩=||x||2+2R⟨x,y⟩+||y||2 ≤||x||2+2|⟨x,y⟩|+||y||2≤||x||2+2|⟨x,y⟩|+||y||2 ≤||x||2+2||x||⋅||y||+||y||2=(||x||+||y||)2≤||x||2+2||x||⋅||y||+||y||2=(||x||+||y||)2 by (a).
(c) ||y+(−x)||≤||y||+||−x||=||y||−||x||⟹||x||−||y||≤−||x−y||||y+(−x)||≤||y||+||−x||=||y||−||x||⟹||x||−||y||≤−||x−y|| ⟹|||x||−||y|||≤||x−y||⟹|||x||−||y|||≤||x−y|| by (b).
(d) ||x+y||2+||x−y||2=⟨x+y,x+y⟩+⟨x−y,x−y⟩||x+y||2+||x−y||2=⟨x+y,x+y⟩+⟨x−y,x−y⟩ = 2||x||2+2||y||22||x||2+2||y||2.
(e) Since xx and yy are orthogonal, ⟨x,y⟩=0⟨x,y⟩=0. Then we have ||x+y||2=||x||2+||y||2||x+y||2=||x||2+||y||2. ◼■
Remark
Remark. If VV has an inner product ⟨x,y⟩⟨x,y⟩ and W≤VW≤V, then WW is also an inner product space when the same function ⟨x,y⟩⟨x,y⟩ is restricted to x,y∈Wx,y∈W.
Examples of Inner Product
(1) For x=(a1,...,an),y=(b1,...,bn)∈Fnx=(a1,...,an),y=(b1,...,bn)∈Fn, define ⟨x,y⟩=n∑i=1ai¯bi.⟨x,y⟩=n∑i=1ai¯¯¯¯bi. It is easily verified that ⟨⋅,⋅⟩⟨⋅,⋅⟩ is the inner product. This ⟨⋅,⋅⟩⟨⋅,⋅⟩ is called the standard inner product of FnFn. (When F=RF=R, this standard inner product is usually called the dot product and is denoted x⋅yx⋅y.)
(2) For A,B∈Mn×n(F)A,B∈Mn×n(F), define ⟨A,B⟩=tr(B∗A),⟨A,B⟩=tr(B∗A), where B∗B∗ is the adjoint of BB. Then ⟨⋅,⋅⟩⟨⋅,⋅⟩ is the inner product on Mn×n(F)Mn×n(F). This ⟨⋅,⋅⟩⟨⋅,⋅⟩ is called the Frobenius inner product.