Normal Operator
Defintion 1. Let where is an inner product space. We say that is normal if .
위와 같은 조건을 만족시켰을 때 선형 연산자가 normal, 즉 정규하다고 부른다. 자명하게 선형 연산자 가 normal일 조건은 가 normal일 조건과 동치이다. (는 orthonormal basis)
Theorem 1
Theorem 1. Let be a normal operator on where is an inner product space. Then the following statements are true.
(a) .
(b) is normal, .
(c) If is an eigenvector of , then is also an eigenvector of . In fact, if , then .
(d) If and are distinct eigenvalues of with corresponding eigenvectors and , then and are orthogonal.
Proof. (a) Note that = . Thus .
(b) Note that Thus is normal.
(c) Note that . Then . Thus .
(d) Since , Thus .
Theorem 2
Theorem 2. Let where is a finite-dimensional complex inner product space. Then is normal there exists an orthonormal basis for consisting of eigenvectors of .
Proof.
Suppose that such basis exists. Then is diagonal matrix and so is . Thus .
By the fundamental theorem of algebra, the chracteristic polynomial of splits. Then by Schur's Theorem, there exists an orthonormal basis for such that is upper triangular.
Clearly is an eigenvector of . Assume that are eigenvectors of . We claim that is also an eigenvector of .
Consider any , and let denote the eigenvalue of corresponding to . Then . Since is upper triangular, we have and . Thus . By induction on , all the vectors in are eigenvectors of .
선형 연산자는 특성 다항식을 풀어서 고유값을 구한 뒤, 각 고유값의 고유공간의 기저를 찾고 합집합시켜주면 대각화시킬 수 있었다. 이때 전제는 대각화 가능해야 하다는 것인데, 그렇다면 구체적으로 대각화 가능할 조건은 무엇인지 알 필요가 있으며, 정규인 선형 연산자는 항상 대각화 가능하다는 것이 결론이다.