Hermitian Operator

2023. 11. 18. 19:20·Mathematics/Linear Algebra

Hermitian

Defintion 1. Let $T \in \mathcal{L}(V)$ where $V$ is an inner product space. We say that $T$ is hermitian (or self-adjoint) if $T = T^*$.

위와 같은 조건을 만족시켰을 때 선형 연산자가 hermitian이라고 부른다. 자명하게 선형 연산자 $T$가 hermitian일 조건은 $[T]_{\beta}$가 hermitian일 조건과 동치이다. ($\beta$는 orthonormal basis)

    선형 연산자가 normal일 조건을 생각해본다면, hermitian이면 normal임을 쉽게 알 수 있다.

Lemma

Lemma. Let $T$ be a hermitian operator on a finite-dimensional inner product space $V$. Then 
(a) Every eigenvalue of $T$ is real.
(b) If $V$ is a real inner product space, then the characteristic polynomial of $T$ splits.
Proof. (a) Let $x$ be an eigenvector of $T$. Then $T(x) = \lambda x$ and $T^*(x) = \overline{\lambda} x$. Since $T$ is hermitian, $\lambda = \overline{\lambda}$. Thus $\lambda \in \mathbb{R}$.
(b) Let $n = \dim(V)$, $\beta$ be an orthonormal basis for $V$, and $A = [T]_{\beta}$. Then $A$ is hermitian. Let $L_A$ be a left-multiplication transformation on $\mathbb{C}^n$. Note that $L_A$ is hermitian because $[L_A]_{\gamma} = A$, where $\gamma$ is the standard ordered basis for $\mathbb{C}^n$. Thus the eigenvalues of $L_A$ is real.
By the fundamental theorem of algebra, the characteristic polynomial of $L_A$ splits into factors of the form $t - \lambda$. Since each $\lambda$ is real, the polynomial splits over $\mathbb{R}$. But $\det(L_A - tI) = \det(A - tI_n) = \det(T - tI)$. Therefore the characteristic polynomial of $T$ splits. $\blacksquare$

Theorem 1

Theorem 1. Let $T \in \mathcal{L}(V)$ where $V$ is a finite-dimensioanl real inner product space. Then $T$ is hermitian $\iff$ there exists an orthonormal basis $\beta$ for $V$ consisting of eigenvectors of $T$.
Proof. $(\Longleftarrow)$ 
Since $V$ is real inner product space, $[T]^*_{\beta} = [T]^t_{\beta}$. Because $[T]_{\beta}$ is a diagonal matrix, $[T]_{\beta} = [T]^t_{\beta} = [T]^*_{\beta}$. Thus $T$ is hermitian.
$(\Longrightarrow)$
By Lemma, the characteristic polynomial of $T$ splits. Then by Schur's Theorem, we have an orthonormal basis $\beta$ for $V$ that $[T]_{\beta}$ is upper triangular.
Note that $A = [T]_{\beta} = [T^*]_{\beta} = [T]^*_{\beta} = A^*$. This means that $A$ is a diagnoal matrix. Thus $\beta$ consists of eigenvectors of $T$. $\blacksquare$

    Normal인 선형 연산자가 항상 대각화 가능했듯이, hermitian 선형 연산자도 항상 그러하다. hermitian일 조건이 중요한 이유는 Lemma (a) 때문인데, 고유값이 항상 실수임이 보장되기 때문에 양자역학과 같은 물리학 분야에서 중요하게 다뤄진다.

저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • Unitarily, Orthogonally Equivalent
  • Unitary, Orthogonal Operator
  • Normal Operator
  • Schur's Theorem
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (280)
      • Mathematics (185)
        • Real analysis (35)
        • Linear Algebra (61)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Hermitian Operator
상단으로

티스토리툴바