Hermitian
Defintion 1. Let where is an inner product space. We say that is hermitian (or self-adjoint) if .
위와 같은 조건을 만족시켰을 때 선형 연산자가 hermitian이라고 부른다. 자명하게 선형 연산자 가 hermitian일 조건은 가 hermitian일 조건과 동치이다. (는 orthonormal basis)
선형 연산자가 normal일 조건을 생각해본다면, hermitian이면 normal임을 쉽게 알 수 있다.
Lemma
Lemma. Let be a hermitian operator on a finite-dimensional inner product space . Then
(a) Every eigenvalue of is real.
(b) If is a real inner product space, then the characteristic polynomial of splits.
Proof. (a) Let be an eigenvector of . Then and . Since is hermitian, . Thus .
(b) Let , be an orthonormal basis for , and . Then is hermitian. Let be a left-multiplication transformation on . Note that is hermitian because , where is the standard ordered basis for . Thus the eigenvalues of is real.
By the fundamental theorem of algebra, the characteristic polynomial of splits into factors of the form . Since each is real, the polynomial splits over . But . Therefore the characteristic polynomial of splits.
Theorem 1
Theorem 1. Let where is a finite-dimensioanl real inner product space. Then is hermitian there exists an orthonormal basis for consisting of eigenvectors of .
Proof.
Since is real inner product space, . Because is a diagonal matrix, . Thus is hermitian.
By Lemma, the characteristic polynomial of splits. Then by Schur's Theorem, we have an orthonormal basis for that is upper triangular.
Note that . This means that is a diagnoal matrix. Thus consists of eigenvectors of .
Normal인 선형 연산자가 항상 대각화 가능했듯이, hermitian 선형 연산자도 항상 그러하다. hermitian일 조건이 중요한 이유는 Lemma (a) 때문인데, 고유값이 항상 실수임이 보장되기 때문에 양자역학과 같은 물리학 분야에서 중요하게 다뤄진다.