Conditional Probability

2024. 12. 5. 16:16·Mathematics/Probability

Conditional Probability

Definition 1. Let $E$ and $F$ be events. We define the conditional probability that $E$ occurs given that $F$ has occurred, denoted by $P(E | F)$, by $$P(E | F) = \frac{P(EF)}{P(F)}$$ if $P(F) > 0$.

사건 $F$가 먼저 일어났다는 가정 하에 $E$가 일어나는 확률을 위와 같은 방법으로 정의한다. 이때 sample space를 $F$로 한정 지을 수 있고, $F$와 동시에 $E$가 일어나야 하므로 위와 같은 정의는 합리적이다. 위 식에서 양변에 $P(F)$를 곱함으로써 $$P(EF) = P(F)P(E | F)$$로 쓰기도 한다. 이를 일반화하면 다음과 같다.

 

The Multiplication Rule

For any sequence of events $E_1, ..., E_n$, $$P(E_1 \cdots E_n) = P(E_1)P(E_2 | E_1) \cdots P(E_n | E_1 \cdots E_{n-1})$$
저작자표시 (새창열림)
'Mathematics/Probability' 카테고리의 다른 글
  • Axioms of Probability
  • Union and Intersection of events, Mutually Exclusive
  • Sample Space and Events
  • The Basic Principle of Counting, Permutation, Combination
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Conditional Probability
상단으로

티스토리툴바