Infinite Series

2024. 12. 16. 18:13·Mathematics/Calculus

Infinite Series

Definition 1. Given a sequence of numbers $\{ a_n \}$, an expression of the form $$a_1 + a_2 + \cdots + a_n + \cdots$$ is an infinite series. The number $a_n$ is the $n$th term of the series. The sequence $\{ s_n \}$ defined by $$s_n = \sum_{k=1}^n a_k$$ is the sequence of partial sums of the series, the number $s_n$ being the $n$th partial sum. If the sequence of partial sums converges to a limit $L$, we say that the series converges and that its sum is $L$. In this case, we also write $$a_1 + a_2 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n = L.$$ If the sequence of partial sums of the series does not converge, we say that the series diverges.

Geometric Series

Definition 2. Geometric series are series of the form $$a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$ in which $a$ and $r$ are fixed real numbers and $a \neq 0$. The number $r$ is called the ratio. 
Theorem 1. For a geometric series $a + ar + \cdots + ar^{n-1} + \cdots$, if $|r| < 1$, the series converges to $\frac{a}{1-r}$: $$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \text{  } |r| < 1.$$ If $|r| \geq 1$, the series diverges. 

Properties

Theorem 2. If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then
(1) $\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n = A \pm B$
(2) $\sum ka_n = k \sum a_n = kA$ for any number $k$.
Corollary. (1) Every nonzero constant multiple of a divergent series diverges. 
(2) If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n \pm b_n)$ diverges. 

Theorem

Theorem 2. A series $\sum_{n=1}^{\infty} a_n$ of nonnegative terms converges if and only if its partial sums are bounded above.
Proof. Since each term of $\{ a_n \}$ is nonnegative, the partial sums $s_n$ is monotonically increasing.  Then by the Monotonic Sequence Theorem, the lemma is true. $\blacksquare$
저작자표시 (새창열림)
'Mathematics/Calculus' 카테고리의 다른 글
  • Power Series
  • Series Tests
  • Sequences
  • Improper Integrals
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (282) N
      • Mathematics (187) N
        • Real analysis (37) N
        • Linear Algebra (61)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Infinite Series
상단으로

티스토리툴바