Parametrization of Curves
Definition 1. If xx and yy are given as functions x=f(t), y=g(t)x=f(t), y=g(t) over an interval II of tt-values, then the set of points (x,y)=(f(t),g(t))(x,y)=(f(t),g(t)) defined by these equations is a parametric curve. The equations are parametric equations for the curve.
The variable tt is a parameter for the curve, and its domain II is the parameter interval. If II is a closed interval, a≤t≤ba≤t≤b, the point (f(a),g(a))(f(a),g(a)) is the initial point of the curve and (f(b),g(b))(f(b),g(b)) is the terminal point. When we give parametric equations and a parameter interval for a curve, we say that we have parametrized the curve. The equations and interval together constitute a parametrization of the curve.
Differentiable Parametric Curve
Definition 2. A Parametrized curve x=f(t)x=f(t) and y=g(t)y=g(t) is differentiable at tt if ff and gg are differentiable at tt.
Derivatives for Parametric Curves
Theorem 1. Let a parametrized curve given by x=f(t),y=g(t)x=f(t),y=g(t) be differentiable at tt. If y is also a differentiable function of xx, then the derivatives dy/dt,dx/dtdy/dt,dx/dt, and dy/dxdy/dx exist and if dx/dt≠0dx/dt≠0, then dydx=dydxdxdt.dydx=dydxdxdt.
If yy is defined as a twice-differentiable function of xx, then at any point where dx/dt≠0dx/dt≠0 and y′=dy/dxy′=dy/dx, d2ydx2=dy′dtdxdt.d2ydx2=dy′dtdxdt.
Length of a Parametric Curve
Definition 3. If a curve CC is defined parametrically by x=f(t)x=f(t) and y=g(t),a≤t≤by=g(t),a≤t≤b, where f′f' and g′g' are continuous and not simultaneously zero on [a,b][a,b], and CC is traversed exactly once as tt increases from t=at=a to t=bt=b, then the length of CC is the definite integral L=∫ba√[f′(t)]2+[g′(t)]2dx.L=∫ba√[f′(t)]2+[g′(t)]2dx.
일반적인 함수의 arc length를 정의할 때와 동일하다. 우선 parametric curve가 smooth, 즉 f′,g′f′,g′이 모두 연속이고 cusps, 즉 첨점이 존재하지 않는다고 가정하자. 동일하게 구간 [a,b][a,b]를 잘게 쪼개고 각 subinterval을 이은 line segment들의 길이를 구하자. Mean Value Theorem에 의해 각 subinterval [tk−1,tk][tk−1,tk] 안에 t∗k,t∗∗kt∗k,t∗∗k가 존재하여 Δxk=f′(t∗k)Δtk,Δyk=g′(t∗∗k)Δtk 를 만족시킨다. 이제 위 사실들을 이용하여 line segment들의 길이를 모두 합해주면 n∑k=1√(Δxk)2+(Δyk)2=n∑k=1√[f(tk)−f(tk−1)]2+[g(tk)−g(tk−1)]2n∑k=1√[f′(t∗k)2+[g′(t∗∗k)]2]Δtk이다. 이제 partiton의 norm이 0으로 가는 극한을 취해면 우리가 원하는 definite integral의 형태가 된다.
Area of Surface of Revolution for Parametrized Curves
Definition 4. If a smooth curve x=f(t),y=g(t),a≤t≤b, is traversed exactly once as t increases from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows: S=∫ba2πy√(dxdt)2+(dydt)2dx (Revolution about the x axis)