Parametrization of Curves
Definition 1. If and are given as functions over an interval of -values, then the set of points defined by these equations is a parametric curve. The equations are parametric equations for the curve.
The variable is a parameter for the curve, and its domain is the parameter interval. If is a closed interval, , the point is the initial point of the curve and is the terminal point. When we give parametric equations and a parameter interval for a curve, we say that we have parametrized the curve. The equations and interval together constitute a parametrization of the curve.
Differentiable Parametric Curve
Definition 2. A Parametrized curve and is differentiable at if and are differentiable at .
Derivatives for Parametric Curves
Theorem 1. Let a parametrized curve given by be differentiable at . If y is also a differentiable function of , then the derivatives , and exist and if , then
If is defined as a twice-differentiable function of , then at any point where and ,
Length of a Parametric Curve
Definition 3. If a curve is defined parametrically by and , where and are continuous and not simultaneously zero on , and is traversed exactly once as increases from to , then the length of is the definite integral
일반적인 함수의 arc length를 정의할 때와 동일하다. 우선 parametric curve가 smooth, 즉 이 모두 연속이고 cusps, 즉 첨점이 존재하지 않는다고 가정하자. 동일하게 구간 를 잘게 쪼개고 각 subinterval을 이은 line segment들의 길이를 구하자. Mean Value Theorem에 의해 각 subinterval 안에 가 존재하여 를 만족시킨다. 이제 위 사실들을 이용하여 line segment들의 길이를 모두 합해주면 이다. 이제 partiton의 norm이 0으로 가는 극한을 취해면 우리가 원하는 definite integral의 형태가 된다.
Area of Surface of Revolution for Parametrized Curves
Definition 4. If a smooth curve , is traversed exactly once as increases from to , then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows: