Lines and Planes in Space

2024. 12. 20. 15:24·Mathematics/Calculus

Vector Equation for a Line

A vector equation for the line $L$ through $P_0(x_0, y_0, z_0)$ parallel to $\mathbf{v}$ is $$\mathbf{r}(t) = \mathbf{r}_0 + t \mathbf{v}, \text{  } -\infty < t < \infty,$$ where $\mathbf{r}$ is the position vector of a point $P(x, y, z)$ on $L$ and $\mathbf{r}_0$ is the position vector of $P_0(x_0, y_0, z_0)$.

Vector Equation for a Plane

A vector equation for the plane through $P_0(x_0, y_0, z_0)$ normal to $\mathbf{n} = A \mathbf{i} + B \mathbf{j} + C\mathbf{k}$ is $$\mathbf{n} \cdot \overrightarrow{P_0P} = 0$$ where $\mathbf{P}$ is any point on the plane.
저작자표시 (새창열림)
'Mathematics/Calculus' 카테고리의 다른 글
  • Curve
  • Cylinders and Quadric Surfaces
  • Parametrization of Curves
  • Taylor and Maclaurin Series
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Lines and Planes in Space
상단으로

티스토리툴바