Divergence Theorem
Theorem 1. Let be a vector field whose components have continuous first partial derivatives, and let be a piecewise smooth oriented closed surface. The flux of across in the direction of the surface’s outward unit normal field equals the triple integral of the divergence over the region enclosed by the surface:
Divergence theorem, 즉 발산 정리는 그린 정리의 두번째 버전을 확장한 정리이다. 즉 폐곡면에서 벡터장 를 적분한 값은 그 폐곡면으로 둘러쌓인 영역에서 의 divergence를 적분한 값과 같다. 폐곡면 내부 영역에서 작은 piece들의 divergence는 맞닿아 있는 부분에서 서로 상쇄되므로 겉면의 정보만 알면 영역 내부의 divergence를 파악할 수 있다는 것이다.
Proof. Let . We suppose that is a convex region with no holes or bubbles and that any line perpendicular to the -plane at an interior point of the region intersects the surface in exactly two points, producing surfaces with . We make similar assumptions about and .
Note that for , Then .
We need to show that We prove the theorem by establish the following equation: Because is the angle between and , we have on . Similarly, on . Therefore, This procedure is true for other two parts of . This proves the theorem for these special regions.