Function
Definition 1. Let X,Y be sets. A function from X to Y is a relation f from X to Y satisfying
(a) Dom(f) = X,
(b) If (x,y)∈f and (x,z)∈f, then y=z.
(x,y)∈f는 관습상 xfy가 아닌 y=f(x)라고 쓴다. 또한 X에서 Y로의 관계인 함수 f는 f:X⟶Y와 같이 표기한다.
The Condition For Functions To Be Equal
Theorem 1. Let f,g:X⟶Y be functions. Then f=g⟺f(x)=g(x),∀x∈X.
The Union of Functions
Theorem 2. Let f:A⟶C and g:B⟶D be functions such that f(x)=g(x),∀x∈A∩B. Then the union h of f and g defines the function h=f∪g:A∪B⟶C∪D where h(x)={f(x), if x∈Ag(x), if x∈B.
Image and Inverse Imange
Definition 1. Let f:X⟶Y be a function, and let A⊆X and B⊆Y, respectively. Then
(a) The image of A under f, which we denote f(A), is the set f(A)={f(x)|x∈A}.
(b) The inverse image of B under f, which we denote f−1(B), is the set {x|f(x)∈B}.
Theorem 3
Theorem 3. Let f:X⟶Y be a function. Then
(a) f(∅)=∅.
(b) f({x})={f(x)},∀x∈X.
(c) A⊆B⊆X⟹f(A)⊆f(B).
(d) C⊆D⊆Y⟹f−1(C)⊆f−1(D).
Theorem 4
Theorem 4. Let f:X⟶Y be a function. Then (a)f(⋃γ∈ΓAγ)=⋃γ∈Γf(Aγ).(b)f(⋂γ∈ΓAγ)⊆⋂γ∈Γf(Aγ).
(b)에서 등호가 성립하지 않는 이유는 상수 함수의 존재 때문이다. 좌변은 상수 하나의 singleton인데, 우변은 그보다 항상 크거나 같기 마련이다.
Theorem 5
Theorem 5. Let f:X⟶Y be a function. Then (a)f−1(⋃γ∈ΓBγ)=⋃γ∈Γf−1(Bγ).(b)f−1(⋂γ∈ΓBγ)=⋂γ∈Γf−1(Aγ).
Theorem 6
Theorem 6. Let f:X⟶Y be a function and let B,C⊆Y. Then f−1(B−C)=f−1(B)−f−1(C).