Injective, Surjective, and Bijective

2025. 2. 26. 19:05·Mathematics/Set Theory

Injective

Definition 1. A function $f : X \longrightarrow Y$ is said to be injective or one-to-one if $x_1, x_2 \in X$ with $f(x_1) = f(x_2)$, then $x_1 = x_2$. 

Surjective

Definition 2. A function $f : X \longrightarrow Y$ is said to be surjective or onto if $y \in Y$, then there exists $x \in X$ such that $f(x) = y$. In other words, $f : X \longrightarrow Y$ is surjective $\iff f(X) = Y$.

Bijective

Definition 3. A function $f : X \longrightarrow Y$ is said to be bijective if it is both injective and surjective. A bijection is also called a one-to-one correspondence.

Theorem 4에서 등호가 성립하지 않는 이유가 상수 함수 때문이라고 했는데, 그렇다면 상수 함수의 경우를 제외해 버린다면, 즉 injective의 조건을 걸어준다면 등호가 성립한다고 말할 수 있다.

Theorem 1

Theorem 1. Let $f : X \longrightarrow Y$ be a injection. Then $$f(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \subseteq \bigcap_{\gamma \in \Gamma} f(A_{\gamma}).$$

Theorem 2

Theorem 2. Let $f : X \longrightarrow Y$ be a function. Then
(a) If there exists a function $g : Y \longrightarrow X$ such that $g \circ f = I_X$, then $f : X \longrightarrow Y$ is injective.
(b) If there exists a function $h : Y \longrightarrow X$ such that $f \circ h = I_Y$, then $f : X \longrightarrow Y$ is surjective.
저작자표시 (새창열림)
'Mathematics/Set Theory' 카테고리의 다른 글
  • Infinite Sets
  • Composition of Functions
  • Function
  • Partition
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Injective, Surjective, and Bijective
상단으로

티스토리툴바