Coset and Quotient Space

2023. 3. 10. 16:50·Mathematics/Linear Algebra
목차
  1. Coset
  2. Theorem 1
  3. Quotient Space
  4. Theorem 2

    이 포스트에서 V,WV,W는 모두 FF-벡터공간으로 취급한다.

Coset

Definition 1. Let W≤VW≤V. ∀v∈V∀v∈V, the set {v}+W:={v+w|w∈W}{v}+W:={v+w|w∈W} is called the coset of WW containing vv. 
It is customary to denote this coset by v+Wv+W rather than {v}+W{v}+W.

Theorem 1

Theorem 1. Let W≤VW≤V, and let v+Wv+W be a coset of WW containing vv. 
(a) v+W≤V⟺v∈W.v+W≤V⟺v∈W.
(b) Let v1,v2∈V.v1,v2∈V. Then v1+W=v2+W⟺v1−v2∈W.v1+W=v2+W⟺v1−v2∈W.
Proof. 
(a) Assume that v+Wv+W is a subspace of VV. Let u∈v+Wu∈v+W. Then ∃w∈W∃w∈W such that u=v+wu=v+w. Note that u+v=v+(v+w)∈v+W.u+v=v+(v+w)∈v+W. Since WW is a subspace of VV, v∈Wv∈W.
Assume that v∈Wv∈W. Then v+(−v)=0∈v+Wv+(−v)=0∈v+W. Let x,y∈v+Wx,y∈v+W and c∈Fc∈F. Then ∃w1,w2∈W∃w1,w2∈W such that x=v+w1,y=v+w2.x=v+w1,y=v+w2. Hence cx+y=c(v+w1)+(v+w2)=v+(cv+cw1+w2).cx+y=c(v+w1)+(v+w2)=v+(cv+cw1+w2). Since cv+cw1+w2∈Wcv+cw1+w2∈W, cx+y∈v+Wcx+y∈v+W. Thus v+Wv+W is a subspace of VV. 

(b) Assume that v1+W=v2+Wv1+W=v2+W. Let u∈v1+Wu∈v1+W. Then ∃w1∈W∃w1∈W such that u=v1+w1u=v1+w1. Since u∈v2+Wu∈v2+W, ∃w2∈W∃w2∈W such that u=v2+w2u=v2+w2, and so u=v1+w1=v2+w2.u=v1+w1=v2+w2. Hence (v1−v2)+(w1−w2)=0∈W.(v1−v2)+(w1−w2)=0∈W. Since (w1−w2)∈W(w1−w2)∈W, (v1−v2)∈W(v1−v2)∈W. 
Assume that v1−v2∈Wv1−v2∈W. Let u∈v1+Wu∈v1+W. Then ∃w∈W∃w∈W such that u=v1+wu=v1+w. Note that u=v2+(v1−v2+w)∈v2+Wu=v2+(v1−v2+w)∈v2+W. Thus v1+W⊆v2+W.v1+W⊆v2+W. In the same manner, it is easily seen to v2+W⊆v1+Wv2+W⊆v1+W. Thus v1+W=v2+W.v1+W=v2+W. ■◼

Quotient Space

Definition 2. We define the quotient space of VV modulo WW, denoted V∖WV∖W, by V∖W={v+W|v∈V}V∖W={v+W|v∈V}. 

Theorem 2

Theorem 2. The quotient space of VV modulo WW is a vector space with the following operations: (v1+W)+(v2+W)=(v1+v2)+W,∀v1,v2∈Va(v+W)=av+W,∀v∈V,a∈F.(v1+W)+(v2+W)=(v1+v2)+W,∀v1,v2∈Va(v+W)=av+W,∀v∈V,a∈F.

Reference is here: https://product.kyobobook.co.kr/detail/S000003155051

 

Linear Algebra | Stephen Friedberg - 교보문고

Linear Algebra | For courses in Advanced Linear Algebra. This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes

product.kyobobook.co.kr

 

저작자표시 (새창열림)
  1. Coset
  2. Theorem 1
  3. Quotient Space
  4. Theorem 2
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • The Characteristic Polynomial
  • The Diagonalization, Eigenvector and Eigenvalue
  • Determinant of a Linear Operator
  • Dual Space
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (282) N
      • Mathematics (187) N
        • Real analysis (37) N
        • Linear Algebra (61)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Coset and Quotient Space

개인정보

  • 티스토리 홈
  • 포럼
  • 로그인
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.