Cramer's Rule

2025. 7. 4. 00:26·Mathematics/Linear Algebra

Cramer's Rule

Cramer's Rule. Let $Ax = b$ be a system of linear equations for $A \in M_{n \times n}(F)$. If $A$ is invertible, then $Ax = b$ has the unique solution given by $$x_j = \frac{\det C_j}{\det A}, \quad j = 1, ..., n,$$ where $C_j$ is the matrix obtained from $A$ by replacing the $j$-th column with the column vector $b$.
Proof. We have $\textbf{x} = A^{-1} \textbf{b}$. Then $$\textbf{x} = \frac{1}{\det A} \begin{bmatrix} A_{11} & \cdots & A_{n1} \\ \vdots & \ddots & \vdots \\ A_{1n} & \cdots & A_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \\ = \frac{1}{\det A} \begin{bmatrix} A_{11}b_1 + \cdots A_{n1} b_n \\ \vdots \\ A_{1n}b_1 + \cdots + A_{nn}b_n \end{bmatrix}$$ Thus $$x_j = \frac{1}{\det A}(A_{1j}b_1 + \cdots + A_{nj} b_n) = \frac{\det(C_j)}{\det A} \blacksquare$$
저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • Basis of the Sum and Intersection
  • Structure of The System of Linear Equations
  • Row and Column Spaces
  • How To Compute The Inverse of a Matrix
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (283) N
      • Mathematics (188) N
        • Calculus (55)
        • ODE (1) N
        • Set Theory (13)
        • Real analysis (37)
        • Linear Algebra (61)
        • Number Thoery (11)
        • Abstract Algebra (1)
        • Probability (6)
        • Writing (2)
        • Problems (1)
      • Physics (76)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (11)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Cramer's Rule
상단으로

티스토리툴바