Determinant
Definition 1. The determinant of A∈Mn×n(F) is a scalar det(A)=n∑j=1(−1)i+jAijdet(~Aij) for some row i, where ~Aij is the (n−1)×(n−1) matrix obtained from A by deleting row i and column j.
If n=1, then det(A):=A11.
Determinant, 즉 행렬식은 치환으로 정의되나 여기서는 흔히 라플라스 전개라고 알려진 방법으로 정의하여 잘 알려진 성질들을 소개하는 방식으로 서술하겠다.
Theorem 1
Theorem 1. Let u,v,ai(i=1,...,r−1,r+1,...,n)∈Fn and k∈F. Then for 1≤r≤n, we have
det(a1⋮ar−1u+kvar+1⋮an)=det(a1⋮ar−1uar+1⋮an)+kdet(a1⋮ar−1var+1⋮an).
Theorem 2
Theorem 2. Let A,B∈Mn×n(F). Then
(a) det(AB)=det(A)⋅det(B).
(b) det(At)=det(A).
(c) A is invertible ⟺ det(A) ≠0. Furthermore, if A is invertible, then det(A−1) = 1det(A).
(d) If rank(A) <n, then det(A) = 0.
(e) If A has a zero row, then det(A) = 0.
(f) If A has two identical rows, then det(A) = 0.
(g) If A is an upper triangular matrix, then det(A) is the product of its diagonal entries.
(h) If A and B are similar, then det(A)=det(B).
3×3 행렬 A=(a11a12a13a21a22a23a31a32a33)의 determinant는 Levi-Civita symbol과 아인슈타인 합 규약을 사용하여 다음과 같이 표현할 수 있다. det(A)=εijka1ja2ja3k