Similarity of Matrix

2023. 9. 9. 17:19·Mathematics/Linear Algebra

Similar

Definition 1. Let $A, B \in M_{n \times n}(F)$. We say that $B$ is similar to $A$ if $\exists Q \in M_{n \times n}$ such that $Q$ is invertible and $B = Q^{-1}AQ$.

Property

Property. Let $A, B \in M_{n \times n}(F)$ be the similar matrices. Then
(a) $A$ and $B$ have the same characteristic polynomial.
Proof. (a) Since $A$ and $B$ are similar, $\exists$ invertible $Q \in M_{n \times n}(F)$ such that $B = Q^{-1}AQ$. Then $f_B(t) = \det(B - tI) = \det(Q^{-1}AQ - tI)$ = $\det(Q^{-1}(A - tI)Q)$ = $\det(Q^{-1})\det(A-tI)\det(Q)$ = $\det(A - tI) = f_A(t)$. $\blacksquare$
저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • The Elementary Operation
  • Dual Space
  • The Change of Coordinate Matrix
  • The Fundamental Theorem of Linear Algebra
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (266) N
      • Mathematics (178) N
        • Real analysis (25) N
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (69)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (13)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Similarity of Matrix
상단으로

티스토리툴바