Unitarily, Orthogonally Equivalent
Definition 1. Let $A, B \in M_{n \times n}(\mathbb{C})$ [$M_{n \times n}(\mathbb{R})$]. Then $A$ and $B$ are unitarily equivalent [orthogonally equivalent] if there exists a unitary [orthogonal] matrix $P$ such that $A = P^*BP$ [$A = P^tBP$].