Critical Numbers

2024. 12. 5. 19:12·Mathematics/Calculus

Fermat's Theorem

Theorem 1. If $f$ has a local maximum or minimum at $c$, and if $f'(c)$ exists, then $f'(c) = 0$.
Proof. Without loss of generality, suppose that $f$ has a local maximum at $c$. This means that $f(c) \geq f(c+h)$ for $h$ which is sufficiently close to $0$. If $h > 0$, we have $$\frac{f(c+h) - f(c)}{h} \leq 0 \\ \Longrightarrow \lim_{h \rightarrow 0^+} \frac{f(c+h)-f(c)}{h} = f'(c) \leq 0$$ and so we have shown that $f'(c) \leq 0$. Similarly, we can show that $f'(c) \geq 0$ if $h < 0$. Since both of these inequalities must be true, the only possibility is that $f'(c) = 0$. $\blacksquare$

 

Critical Number

Definition 1. A critical number of a function $f$ is a number $c$ in the domain of $f$ such that either $f'(c) = 0$ or $f'(c)$ does not exist. 
Remark. We can rephrase Fermat's theorem in terms of critical numbers as follows: 
If $f$ has a local maximum or minimum at $c$, then $c$ is a critical number of $f$. 
저작자표시 (새창열림)
'Mathematics/Calculus' 카테고리의 다른 글
  • Riemann Sum and Definite Integral
  • Mean Value Theorem
  • Maximum and Minimum
  • 함수의 증가, 감소
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (268) N
      • Mathematics (180) N
        • Real analysis (27) N
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (69)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (13)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Critical Numbers
상단으로

티스토리툴바