Permutation
Definition 1. A permutation of a set $A$ is a function $\phi : A \rightarrow A$ that is bijective.
Remark. Let denote the function composition $\sigma \circ \tau$ for permutations $\sigma$, $\tau$ by $\sigma \tau$. Then $\sigma \tau$ is bijective.
임의의 자연수 $n$에 대해 집합 $A = \{ 1, 2, ..., n \}$가 주어져 있다. 이때 $A$의 permutation, 즉 치환은 각 자연수를 다른 자연수로 보내는 작용을 하는 함수이며, 한마디로 순서를 바꿔주는 함수이다.
Symmetric Group
Definition 2. Let $A$ be the finite set $\{ 1, 2, ..., n\}$. The group of all permutations of $A$ is the symmetric group on $n$ letters, and is denoted by $S_n$.
Definition 3. We define the equivalence relation $\sim$ in $A$ if the following condition holds:
For $a, b \in A$, let $a \sim b$ $\iff$ $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$.
위와 같이 relation을 정의하면 equivalence relation이 됨은 쉽게 보일 수 있다. $A$의 원소에 동일한 permutation을 유한 번 적용하여서 어떤 원소를 얻어낼 수 있다면, 두 원소는 위에서 정의한 관계에 있다고 말한다.
Orbit
Definition 4. Let $\sigma$ be a permutation of a set $A$. The equivalence classes in $A$ determined by the equivalence relation defined above are the orbits of $\sigma$.
Cycle
Definition 5. A permutation $\sigma \in S_n$ is a cycle if it has at most one orbit containing more than one element. The length of a cycle is the number of elements in its largest orbit.
Transposition
Definition 6. A cycle of length $2$ is a transposition.
Parity
Definition 7. A permutation of a finite set is even or odd according to whether it can be expressed as a product of an even number of transpositions or an odd number of transpositions, respectively.
Levi-Civita Symbol
Definition 8. The Levi-Civita symbol is defined by: $$\varepsilon_{ij...} = \begin{cases} +1 & \text{if } (i, j, ...) \text{ is an even permutation of } (1, 2, ...) \\ -1 & \text{if } (i, j, ...) \text{ is an odd permutation of } (1, 2, ...) \\ 0 & \text{otherwise} \end{cases}$$
Reference is here: https://product.kyobobook.co.kr/detail/S000022899747
First Course in Abstract Algebra | John Fraleigh - 교보문고
First Course in Abstract Algebra | Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work b
product.kyobobook.co.kr