Isomorphism

2025. 7. 2. 23:02·Mathematics/Linear Algebra
목차
  1. Isomorphism
  2. Theorem 35
  3. Theorem 36
  4. Theorem 37
  5. Corollary 37.1
  6. Theorem 38
  7. Theorem 39
  8. Theorem

Isomorphism

Definition 32. We say that VV and W are isomorphic, denoted V≅W, if ∃T∈L(V,W) such that T is invertible. Such T is called an isomorphism from V onto W.

벡터공간 V와 W 사이에 전단사 선형 변환 T가 존재한다는 것은 두 공간의 벡터 사이에 어떤 대응이 존재한다는 뜻이고, 연산이 보존된다는 말과 같다. 따라서 두 공간은 수학적으로 동일한 성질을 가지는 것으로 간주할 수 있고, 이때 두 공간은 isomorphic하다고 부른다. 

Theorem 35

Theorem 35. Let T∈L(V,W) be an isomorphism. Then T−1:W→V is linear.
Proof. Since T is invertible, T is surjective. Then for x,y∈V, ∃u,v∈W such that T(x)=u,T(y)=v⟺T−1(u)=x,T−1(v)=y. For a scalar c, cT(x)+T(y)=T(cx+y)=cu+v⟺T−1(cu+v)=cx+y=cT−1(u)+T−1(v). Hence T−1 is linear. ◼

    두 공간이 isomorphic하면 isomorphism을 통해 두 공간 사이의 많은 수학적 대상들이 보존된다. 지금부터 보존하는 대상들을 하나씩 살펴보자. 

Theorem 36

Theorem 36. V≅W ⟺ dim(V) = dim(W). 
Proof. Let T be an isomorphism from V onto W. Then rank(T) = dim(W) = dim(V). by Theorem 25. ◼

Theorem 37

Theorem 37. Let T∈L(V,W) and let β,γ be finite ordered bases for V,W, respectively. Then T is invertible ⟺ [T]γβ is invertible. Furthermore, [T−1]βγ=([T]γβ)−1.
Proof. 
(⟹)
[T]γβ[T−1]βγ=[TT−1]γ=[IW]γ=I. Similarlly, [T−1]βγ[T]γβ=I. Hence [T]γβ is invertible, and [T−1]βγ=([T]γβ)−1.
(⟸)
Since [T]γβ is invertible, ∃ a matrix A such that A[T]γβ=I, where A=([T]γβ)−1.
Suppose that T(x)=T(y) for x,y∈V. Then we have A[T]γβ[x]β=I[x]β=[IV]β[x]β=[x]β. On the other hand, A[T]γβ[x]β=A[T(x)]γ=A[T(y)]γ=A[T]γβ[y]β=[y]β. Thus [x]β=[y]β⟺x=y, i.e., T is injective.
Since [T]γβ is invertible, it is square. This means that β and γ contain the same number of vectors. Thus T is surjective. Hence T is bijective. ◼

Corollary 37.1

Corollary 37.1. Let A∈Mn×n(F). Then A is invertible ⟺ LA is invertible. Furthermore, (LA)−1=LA−1.

Theorem 38

Theorem 38. Let T∈L(V,W), and let β={v1,...,vn} be an ordered basis for V. Then T is an isomorphism ⟺ T(β) is a basis for W.
Proof.
(⟹) Note that T(β) generates R(T)=W. Suppose that ∑ni=1aiT(vi)=0 for ai∈F(i=1,...,n). Then we have T(∑ni=1aivi)=0. Note that T is injective, so N(T)={0}. Thus ∑ni=1aivi=0⟹ai=0(i=1,...,n). Hence T(β) is a basis for W. 
(⟸) Suppose that T(x)=T(y) for x,y∈V. Let denote x=∑aivi and y=∑bivi for ai,bi∈F. Then we have ∑aiT(vi)=biT(vi)⟹∑(ai−bi)T(vi)=0⟹ai=bi for all i. Thus x=y, so T is injective.
∀y∈W, let denote y=∑ciT(vi) for ci∈F. Then y=T(∑aivi). Thus y∈R(T). Since R(T)⊆W, R(T)=W, so T is surjective. This means that T is bijective, i.e., an isomorphism. ◼

Theorem 39

Theorem 39. Let T∈L(V,W) be an isomorphism, and let V0≤V. Then
(1) T(V0)≤W,
(2) dim(V0) = dim(T(V0)).
Proof. 
(1) Let x,y∈T(V0). Then ∃a,b∈V0 such that T(a)=x,T(b)=y
⟹cx+y=cT(a)+T(b)=T(ca+b)∈T(V0). Thus T(V0)≤W.
(2) Define T′:V0⟶T(V0) by T′(v)=T(v),∀v∈V0. Then cleary T′ is an isomorphism. Thus dim(V0) = dim(T(V0)) by Theorem 2. ◼

    이처럼 T가 isomorphism이면, T는 두 공간 사이의 차원(Theorem 36), 기저(Theorem 38), 부분공간(Theorem 39)을 보존한다는 사실을 알 수 있다. 

Theorem

Theorem. Let V≅Fn and let β={v1,...,vn} be a basis for V. Let T∈L(V,Fn) and define T(vi)=ei,∀i=1,...,n where ei is the ith standard ordered basis vector of Fn. Then T is an isomorphism.
Proof. Note that T(β)={T(vi)|i=1,...,n}={ei|i=1,...,n} is the standard ordered basis of Fn. By Theorem 38, T is an isomorphism. ◼

Reference is here: https://product.kyobobook.co.kr/detail/S000003155051

 

Linear Algebra | Stephen Friedberg - 교보문고

Linear Algebra | For courses in Advanced Linear Algebra. This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes

product.kyobobook.co.kr

 

저작자표시 (새창열림)
  1. Isomorphism
  2. Theorem 35
  3. Theorem 36
  4. Theorem 37
  5. Corollary 37.1
  6. Theorem 38
  7. Theorem 39
  8. Theorem
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • The Change of Coordinate Matrix
  • The Fundamental Theorem of Linear Algebra
  • Left-Multiplication Transformation
  • Matrix Multiplication
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
SAMICO수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (298) N
      • Mathematics (197) N
        • Calculus (56)
        • Set Theory (13)
        • Real analysis (40) N
        • Linear Algebra (61)
        • ODE (2)
        • Number Thoery (11)
        • Abstract Algebra (1)
        • Mathematical Statistics (9) N
        • Probability Distributions (1) N
        • Writing (2)
        • Problems (1)
      • Physics (81) N
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (18)
        • 수리물리 (13)
        • 고전역학 (13) N
      • Computer (7)
      • 독서 (13)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (5)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Isomorphism

개인정보

  • 티스토리 홈
  • 포럼
  • 로그인
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.