이 포스트에서 V,WV,W는 모두 FF-벡터공간으로 취급한다.
The null space and range
Definition 1. Let T∈L(V,W)T∈L(V,W).
(a) The null space (or kernel) N(T)N(T) of TT is the set N(T)={x∈V|T(x)=0}.N(T)={x∈V|T(x)=0}.
(b) The range (or image) R(T)R(T) of TT is the set R(T)={T(x)∈W|x∈V}R(T)={T(x)∈W|x∈V}.
Theorem 1
Theorem 1. Let T∈L(V,W)T∈L(V,W). Then N(T)≤VN(T)≤V and R(T)≤WR(T)≤W.
Proof. Clearly, N(T),R(T)≠∅N(T),R(T)≠∅. Let x,y∈N(T)x,y∈N(T) and z,w∈R(T)z,w∈R(T). Then
(1) T(ax+y)=aT(x)+T(y)=0⟹ax+y∈N(T)T(ax+y)=aT(x)+T(y)=0⟹ax+y∈N(T),
(2) ∃z0,w0∈V∃z0,w0∈V such that T(z0)=zT(z0)=z and T(w0)=wT(w0)=w
⟹⟹ cz+w=cT(z0)+T(w0)=T(cz0+w0)⟹cz+w∈R(T)cz+w=cT(z0)+T(w0)=T(cz0+w0)⟹cz+w∈R(T).
Thus N(T)≤VN(T)≤V and R(T)≤WR(T)≤W. ◼
Theorem 2
Theorem 2. Let T∈L(V,W). If β is a basis for V, then R(T)=⟨T(β)⟩.
Proof. Since T(β)⊆R(T), <T(β)> ⊆R(T).
Let v∈R(T). Then ∃x∈V such that T(x)=v. Since x∈V, x=∑aiui for ai∈F,ui∈β. Then v=T(x)=T(∑aiui)=∑aiT(ui). Hence v∈⟨T(β)⟩. Thus R(T)⊆ ⟨T(β)⟩ so R(T)=⟨T(β)⟩.◼