The Null Space and Range

2023. 9. 3. 20:08·Mathematics/Linear Algebra

    이 포스트에서 $V, W$는 모두 $F$-벡터공간으로 취급한다.

The null space and range

Definition 1. Let $T \in \mathcal{L}(V, W)$.
(a) The null space (or kernel) $N(T)$ of $T$ is the set $N(T) = \{ x \in V \,|\, T(x) = \mathbf{0} \}.$
(b) The range (or image) $R(T)$ of $T$ is the set $R(T) = \{ T(x) \in W \,|\, x \in V \}$. 

Theorem 1

Theorem 1. Let $T \in \mathcal{L}(V, W)$. Then $N(T) \leq V$ and $R(T) \leq W$.
Proof. Clearly, $N(T), R(T) \neq \emptyset$. Let $x, y \in N(T)$ and $z, w \in R(T)$. Then
(1) $T(ax + y) = aT(x) + T(y) = \mathbf{0} \Longrightarrow ax + y \in N(T)$,
(2) $\exists z_0, w_0 \in V$ such that $T(z_0) = z$ and $T(w_0) = w$
$\Longrightarrow$ $cz + w = cT(z_0) + T(w_0) = T(cz_0 + w_0) \Longrightarrow cz + w \in R(T)$.
Thus $N(T) \leq V$ and $R(T) \leq W$. $\blacksquare$

Theorem 2

Theorem 2. Let $T \in \mathcal{L}(V, W)$. If $\beta$ is a basis for $V$, then $R(T) = \langle T(\beta) \rangle$.
Proof. Since $T(\beta) \subseteq R(T)$, <$T(\beta)$> $\subseteq R(T)$.
Let $v \in R(T)$. Then $\exists x \in V$ such that $T(x) = v$. Since $x \in V$, $x = \sum a_iu_i$ for $a_i \in F, u_i \in \beta$. Then $v = T(x) = T(\sum a_iu_i) =\sum a_iT(u_i).$ Hence $v \in \langle T(\beta) \rangle$. Thus $R(T) \subseteq$ $\langle T(\beta) \rangle$ so $R(T) = \langle T(\beta) \rangle . \blacksquare$
저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • The Matrix Representation of Linear Transformation
  • The Dimension Theorem
  • Linear Transformation
  • Coset and Quotient Space
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
The Null Space and Range
상단으로

티스토리툴바