Linear Combination and Span

2023. 3. 10. 16:37·Mathematics/Linear Algebra

Linear combination

Definition 1. Let $\emptyset \neq S \subseteq V$. A vector $v \in V$ is called a linear combination of vectors of $S$ if $\exists$ $u_1, u_2, ..., u_n \in S$ and $a_1, a_2, ..., a_n \in F$ such that $$v = \sum_{i=1}^{n} a_iu_i.$$

    쉽게 말해 벡터 $v$를 적당히 다른 벡터들의 합으로 표현할 수 있다면, 이때 $v$를 linear combination이라고 한다.

Note. Since $0v = \mathbf{0}, \forall v \in S$, $\mathbf{0}$ is a linear combination of $S \subseteq V$.

Span

Definition 2. Let $\emptyset \neq S \subseteq V$. The span of $S$, denoted $\langle S \rangle$ (or span($S$)), is the set consisting of all linear combinations of the vectors in $S$.
For convenience, we define $\langle \emptyset \rangle $ := $\{ \mathbf{0} \}$.

    즉 $S$의 벡터들로 만들 수 있는 모든 linear combination의 집합을 $S$의 span이라고 부른다. 이때 어떤 집합의 span은 항상 그 집합을 포함한다. (($\because) v = 1 \cdot v, \forall v \in S$)

Note. $\forall S \subseteq V, S \subseteq \langle S \rangle.$

Generate

Definitions 3. We say that $S \subseteq V$ generates (or spans) $V$ if $\langle S \rangle$ = $V$. In this case, we also say that the vectors of $S$ generate (or span) $V$.

    $S$의 span이 전체 벡터 공간 $V$와 같은 경우, $S$는 $V$를 생성한다고 말한다.

Theorem 1

Theorem 1. Let $S \subseteq V$. Then
(1) $\langle S \rangle$ $\leq V$,
(2) If $S \subseteq W \leq V$, then $\langle S \rangle$ $\subseteq W$.

    즉 $\langle S \rangle$ 는 그 자체로 $V$의 subspace이며, 동시에 $S$를 포함하는 "가장 작은" subspace임을 알 수 있다. 따라서 임의의 subspace of $V$가 $S$를 포함한다면, $\langle S \rangle$ 또한 반드시 포함하게 된다. 증명은 다음과 같다.

Proof. 
(1) Let $x, y \in $ $\langle S \rangle$ . Then $\exists a_i \in F, v_i \in S (i = 1, ..., n)$ and $b_j \in F, u_j \in S(j = 1, ..., m)$ such that $x = \sum a_iv_i$ and $y = \sum b_jv_j$.
$\Longrightarrow$ $cx + y \in$ $\langle S \rangle$. Thus $\langle S \rangle$ $\leq V$.
(2) $\forall x \in $ $\langle S \rangle$ , $x = \sum a_iv_i$ for some $a_i \in F, v_i \in S (i = 1, ..., n)$. Since each $v_i \in W$, $x \in W$. Thus $\langle S \rangle$ $\subseteq W$. $\blacksquare$

Theorem 2

    임의의 집합 $S \subseteq V$에 대해서 $S \subseteq$ $\langle S \rangle$ 임을 살펴보았다. 이때 포함관계가 반대로 성립할 조건, 즉 $S = $ $\langle S \rangle$ 일 조건을 다음의 정리가 제시해 준다.

Theorem 2. Let $S \neq \emptyset$. Then $S \leq V$ $\Longleftrightarrow$ $S =$ $\langle S \rangle$ . 

    $S$가 $V$의 subspace일 조건은 $S$가 덧셈에 대해 닫혀있음을 보장해준다. 증명은 다음과 같다.

Proof.
($\Longrightarrow$) Let $v \in$ $\langle S \rangle$ . Then $v = \sum a_iv_i$ where $a_i \in F, w_i \in S$. Since $S$ is a vector space, $v \in S$. Hence $\langle S \rangle$ $\subseteq S$. Clearly, $S \subseteq$ $\langle S \rangle$ . Thus $S$ = $\langle S \rangle$ .

($\Longleftarrow$) Let $u, v \in S$ and $c \in F$. Since $S = $ $\langle S \rangle$ , we can write $u, v$ as $u = \sum a_iu_i$ and $v = \sum b_jv_j$, where $a_i, b_j \in F$ and $u_i, v_j \in S$. Then $$\begin{align*} cu + v = c \sum a_iu_i + \sum b_jv_j \in \langle S \rangle = S \end{align*}$$
Hence $S \leq V$. $\blacksquare$

Theorem 3

Theorem 3. Let $S_1, S_2 \subseteq V$. Then the following statements hold: 
(a) If $S_1 \subseteq S_2$, then $\langle S_1 \rangle$ $\subseteq$ $\langle S_2 \rangle$ . 
(b) $\langle S_1 \cup S_2 \rangle$ = $\langle S_1 \rangle$ + $ \langle S_2 \rangle$.
(c) $ \langle S_1 \cap S_2 \rangle \subseteq \langle S_1 \rangle \cap \langle S_2 \rangle $.
Proof. 
(a) Let $x \in$ $ \langle  S_1 \rangle $. Then $x = \sum a_iv_i$ for $a_i \in F, v_i \in S_1$. Since $S_1 \subseteq S_2$, $x \in $ $ \langle S_2 \rangle $. Hence $ \langle S_1 \rangle $ $\subseteq$ $ \langle S_2 \rangle $.

(b) Let $u \in$ $ \langle S_1 \cup S_2 \rangle $. Then $u = \sum a_iu_i$ for $a_i \in F, u_i \in S_1 \cup S_2$. Since each $u_i \in S_1 \cup S_2$, we can rewrite $u$ as $u = a_iu_i = a_jx_j + a_ky_k$ where $x_j \in S_1, y_k \in S_2$. Then $v \in$ $ \langle S_1 \rangle $ + $ \langle S_2 \rangle $, i.e., $ \langle S_1 \cup S_2 \rangle $ $\subseteq$ $ \langle S_1 \rangle $ + $ \langle S_2 \rangle $. The converse can be shown in similar manner.

(c) Let $u \in$ $ \langle S_1 \cap S_2 \rangle $. Then $u = \sum a_iu_i$ for $a_i \in F, u_i \in S_1 \cap S_2$. Since $u_i \in S_1 \wedge u_i \in S_2$, $u \in$ $ \langle S_1 \rangle $ $\wedge$ $u \in$ $ \langle S_2 \rangle $. Thus $u \in$ $ \langle S_1 \rangle $ $\cap$ $ \langle S_2 \rangle $. $\blacksquare$

Reference is here: https://product.kyobobook.co.kr/detail/S000003155051

 

Linear Algebra | Stephen Friedberg - 교보문고

Linear Algebra | For courses in Advanced Linear Algebra. This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes

product.kyobobook.co.kr

 

저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • Basis and Dimension
  • Linearly dependence and independence
  • Subspaces
  • Vector space
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (275)
      • Mathematics (185)
        • Real analysis (32)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Linear Combination and Span
상단으로

티스토리툴바