Improper Integrals

2024. 12. 12. 18:15·Mathematics/Calculus

Improper Integrals 

Definition 1. Integrals with infinite limits of integration are improper integrals of Type I.
(1) If $f(x)$ is continuous on $[0, \infty)$, then $$\int_a^{\infty} f(x) dx = \lim_{b \rightarrow \infty} \int_a^b f(x) dx.$$ (2) If $f(x)$ is continuous on $(- \infty, b]$, then $$\int_{- \infty}^b f(x) dx = \lim_{a \rightarrow - \infty} \int_a^b f(x) dx.$$ (3) If $f(x)$ is continuous on $(- \infty, \infty)$, then $$\int_{- \infty}^{\infty} f(x) dx = \int_{- \infty}^c f(x) dx + \int_c^{\infty} f(x) dx,$$ where $c$ is any real number.
In each case, if the limit exists and is finite we say that the improper integral converges and that the limit is the value of the improper integral. If the limit fails to exist, the improper integral diverges.
Definition 2. Integrals of functions that become infinite at a point within the interval of integration are improper integrals of Type II.
(1) If $f(x)$ is continuous on $(a, b]$ and discontinuous at $a$, then $$\int_a^b f(x) dx = \lim_{c \rightarrow a^+} \int_c^b f(x) dx.$$ (2) If $f(x)$ is continuous on $[a, b)$ and discontinuous at $b$, then $$\int_a^b f(x) dx = \lim_{c \rightarrow b^-} \int_a^c f(x) dx.$$ (3) If $f(x)$ is discontinuous at $c$, where $a < c < b$, and continuous on $[a, c) \cup (c, b]$, then $$\int_{a}^{b} f(x) dx = \int_{a}^c f(x) dx + \int_c^{b} f(x) dx.$$ In each case, if the limit exists and is finite we say that the improper integral converges and that the limit is the value of the improper integral. If the limit fails to exist, the improper integral diverges.

적분의 구간을 무한대로 늘리고자 할 때, 혹은 세로 점근선이 존재하는 함수를 적분하고자 할 때 위와 같은 정의가 합당함을 쉽게 동의할 수 있을 것이다. 

The Integral $\int_1^{\infty} \frac{dx}{x^p}$

Theorem 1. The integral $\int_1^{\infty} \frac{dx}{x^p}$ converges if $p > 1$ and diverges if $p \leq 1$.
Proof. If $p \neq 1$, $$\int_1^{\infty} \frac{dx}{x^p} = \lim_{c \rightarrow \infty} \int_1^c x^{-p} dx = \lim_{c \rightarrow \infty} \left[ \frac{1}{1-p} x^{1-p} \right]_1^c \\ = \lim_{c \rightarrow \infty} \left( \frac{1}{1-p} c^{1-p} - \frac{1}{1-p} \right) = \begin{cases} \infty & \text{if } 1-p > 0 \\ \frac{1}{p-1} & \text{if } 1 - p <0 \end{cases}.$$ If $p=1$, then $$\int_1^{\infty} \frac{dx}{x^p} = \lim_{c \rightarrow \infty} \int_1^c \frac{1}{x} dx = \lim_{c \rightarrow \infty} (\text{ln } c) = \infty.$$ Thus if $p > 1$ the integral converges, and if $p \leq 1$ the integral diverges. $\blacksquare$

The Comparison Test

Theorem 2. Let $f$ and $g$ be continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then 
(1) If $\int_a^{\infty} g(x) dx$ converges, then $\int_a^{\infty} f(x) dx$ also converges.
(2) If $\int_a^{\infty} f(x) dx$ diverges, then $\int_a^{\infty} g(x) dx$ also diverges.
Proof. (1) By the property of definite integral, $$\int_a^b f(x) dx \leq \int_a^b g(x) dx, \text{  } b > a.$$ Since $\int_a^{\infty} g(x) dx$ converges, $\int_a^{\infty} f(x) dx$ also converge. 
(2) From the contrapositive of (1), it is valid. $\blacksquare$

Limit Comparison Test

Theorem 3. If the positive functions $f$ and $g$ are continuous on $[a, \infty)$, and if $$\lim_{x \rightarrow \infty} \frac{f(x)}{g(x)} = L, \text{  } 0 < L < \infty,$$ then $$\int_{a}^{\infty} f(x) dx \text{  and  } \int_{a}^{\infty} g(x) dx$$ either both converge or both diverge.
저작자표시 (새창열림)
'Mathematics/Calculus' 카테고리의 다른 글
  • Infinite Series
  • Sequences
  • Method of Partial Fractions
  • Integration by Parts
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (275)
      • Mathematics (185)
        • Real analysis (32)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Improper Integrals
상단으로

티스토리툴바