Matrix

2023. 3. 10. 16:43·Mathematics/Linear Algebra
목차

Definition 1

Definition 1.
(a) An m×nm×n matrix AA with entries from a field FF is a rectangular array of the form
A=⎛⎜ ⎜ ⎜ ⎜⎝a11a12⋯a1na21a22⋯a2n⋮⋮⋮am1am2⋯amn⎞⎟ ⎟ ⎟ ⎟⎠A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋮am1am2⋯amn) where each entry aij(1≤i≤m,1≤j≤n)aij(1≤i≤m,1≤j≤n) is an element of FF. We often denote A=[aij]A=[aij] or aij=[A]ijaij=[A]ij. 
(b) The entries aijaij with i=ji=j are the diagonal entries of the matrix.
(c) The entries ai1,ai2,⋯,ainai1,ai2,⋯,ain compose the ith row of the matrix, and the entries a1j,a2j,⋯,amja1j,a2j,⋯,amj compose the jth column of the matrix. The m×nm×n matrix in which each entry equals zero is called the zero matrix, denoted by OO.
(d) If m=nm=n, that is, the number of rows and columns of a matrix are equal, then the matrix is called square.
(e) Two matrices AA and BB are said to be equal if they have the same sizes and Aij=BijAij=Bij for all ii and jj.

Matrix space

Theorem 1. The set of all m×nm×n matrices with entries from a field FF is a vector space, denoted Mm×n(F)Mm×n(F), with the following operations of matrix addition and scalar multiplication: For A,B∈Mm×n(F)A,B∈Mm×n(F) and c∈Fc∈F,
(A+B)ij=Aij+Bijand(cA)ij=cAij(A+B)ij=Aij+Bijand(cA)ij=cAij for 1≤i≤m,1≤j≤n1≤i≤m,1≤j≤n.
We denote the set of all n×nn×n square matrices with entries from FF by Mn(F)Mn(F) instead of Mn×n(F)Mn×n(F).

Remark

Remark. For Mm×n(F)Mm×n(F), the followings hold:
(1) The left and right identities are not the same in general. 
(2) There may be infinitely many one-sided inverses. 
(3) If m=nm=n, the left and right inverses are equal. That is, for A∈Mn(F),A∈Mn(F),if ∃B,C∈Mn(F)∃B,C∈Mn(F) such that BA=InBA=In and AC=InAC=In, then B=CB=C. 

Definition 2

Definition 2. 
(a) The transpose ATAT of an m×nm×n matrix AA is the n×mn×m matrix obtained from AA by interchanging the rows with the columns, i.e., (AT)ij=Aji(AT)ij=Aji.
(b) A symmetric matrix is a matrix AA such that AT=AAT=A. 
(c) A skew-symmetric matrix is a matrix AA if AT=−AAT=−A.
(d) A diagonal matrix is an n×nn×n matrix MM such that Mij=0Mij=0 whenever i≠ji≠j.
(e) The trace of an n×nn×n matrix MM, denoted by tr(M)M), is the sum of the diagonal entries of MM, that is,
tr(M)=M11+M22+⋯+Mnn.tr(M)=M11+M22+⋯+Mnn. (f) A upper triangular matrix is an m×nm×n matrix such that Aij=0Aij=0 whenever i>ji>j.

    diagonal matrix와 trace는 오로지 square, 즉 정사각행렬에 대해서만 정의된다.

Theorem 2

Theorem 2. 
(a) (aA+bB)T=aAT+bBT(aA+bB)T=aAT+bBT for any A,B∈Mm×n(F)A,B∈Mm×n(F) and any a,b∈Fa,b∈F. 
(b) (AT)T=A(AT)T=A for each A∈Mm×n(F)A∈Mm×n(F).
(c) A+ATA+AT is symmetric for any square matrix AA.
(d) A−ATA−AT is skew-symmetric for any square matrix AA.

(e) tr(aA+bBaA+bB) = aa tr(AA) + bb tr(B)B) for any A,B∈Mn×n(F)A,B∈Mn×n(F).

Remark

Remark. 
(a) Every square matrix can be uniquely expressed by a sum of a symmetric matrix and skew-symmetric matrix. 
(∵)A=A+AT2+A−AT2.(∵)A=A+AT2+A−AT2.

(b) A matrix AA is skew-symmetric ⟺⟺ aii=0aii=0 for all ii and aij=−ajiaij=−aji for all ii and jj such that i≠ji≠j.
(c)
The set WW of all symmetric matrices in Mn×n(F)Mn×n(F) is a subspace of Mn×n(F)Mn×n(F). 

(d) The set of diagonal matrices is a subspace of Mn×n(F)Mn×n(F).
(e) The set of n×nn×n matrices having trace equal to zero is a subspace of Mn×n(F)Mn×n(F).

Reference is here: https://product.kyobobook.co.kr/detail/S000003155051

 

Linear Algebra | Stephen Friedberg - 교보문고

Linear Algebra | For courses in Advanced Linear Algebra. This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes

product.kyobobook.co.kr

 

저작자표시 (새창열림)
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • Coset and Quotient Space
  • The Existence of a Basis
  • Basis and Dimension
  • Linearly dependence and independence
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273) N
      • Mathematics (183) N
        • Real analysis (30) N
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71) N
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15) N
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Matrix

개인정보

  • 티스토리 홈
  • 포럼
  • 로그인
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.