어떤 선형 연산자 T가 주어졌을 때 대각화가능한지 결정하고, 가능하다면 대각화하도록 고유벡터들로 이루어진 기저 β를 찾는 것이 우리의 목표이다. T의 고유값은 특성 다항식 f(t)=det(T−tI)를 풀어서 구할 수 있다. 만약 이를 통해 서로 다른 고유값 λ1,...,λk를 구했을 때, 이 고유값들에 대응되는 고유벡터들은 v∈Eλ을 이용해서 구할 수 있다. 이제 이 고유벡터들로 기저를 구성해야 하고, 그 방법을 아래의 정리들이 제시해준다.
Theorem 1
Theorem 1. Let T∈L(V), and let λ1,...,λk be distinct eigenvalues of T. If v1,...,vk are eigenvectors of T such that λi corresponds to vi(1≤i≤k), then {v1,...,vk} is linearly independent.
Proof. The proof is by mathematical induction on k. If k=1, then clearly {v1} is linearly independent.
Suppose that the theorem is ture for k−1, where k−1≥1. If ∑ni=1aivi=0, then (T−λkIV)(n∑i=1aivi)=n∑i=1aiλivi−λk(n∑i=1aivi)=(λ1−λk)a1v1+⋯+(λk−1−λk)ak−1vk−1=0. By the induction hypothesis, each (λi−λk)ai=0 for 1≤i≤k−1. Since each eigenvalues are distinct, ai=0 for 1≤i≤k−1. Then akvk=0⟹ak=0. Thus {v1,...,vk} is linearly independent. ◼
즉 특성다항식을 풀어서 고유벡터들을 얻었다면, 이들의 집합은 적어도 선형 독림임이 보장된다. 이는 고유값의 대수적 중복도는 기하적 중복도보다 작기 때문인데, 따라서 두 중복도의 값이 같아져서 각 고유값들에 대응하는 고유벡터들을 모두 모은 집합이 T를 대각화하는 기저이다. Theorem 1을 확장한 것이 Theorem 2이고, 상술한 내용을 바탕으로 T의 대각화가능 조건과 대각화하는 기저를 구하는 방법을 제시하는 것이 Theorem 3이다.
Corollary
Corollary. Let T∈L(V), and let dim(V)=n. If T has n distinct eigenvalues, then T is diagonalizable.
Proof. By Corollary 3 - 2 (b), it is clear. ◼
Lemma
Lemma. Let T∈L(V), and let λ1,...,λk be distinct eigenvalues of T. Let vi∈Eλi for each i(1≤i≤k). If v1+⋯+vk=0, then each vi=0.
Proof. Suppose there is m∈N such that for 1≤i≤m, vi≠0, and for i>m, vi=0. Then v1+⋯+vk=v1+⋯+vm=0. But by Theorem 1, {v1,...,vm} is linearly independent. ⨂ Thus each vi=0. ◼
Theorem 2
Theorem 2. Let T∈L(V), and let λ1,...,λk be distinct eigenvalues of T. For each i=1,...,k, let Si be a finite linearly independent subset of Eλi. Then S=k⋃i=1Si is a linearly independent subset of V.
Proof. Suppose that Si={vi1,...,vini} for each i. If k∑i=1ni∑j=1aijvij=0 for some aij∈F, then denote ui=ni∑j=1aijvij. Then ∑ki=1ui=0. By Lemma, each ui=∑nij=1aijvij=0. Since each Si is linearly indepdent, each aij=0. Thus S is linearly indepdent. ◼
Theorem 3
Theorem 3. Let T∈L(V) such that the characteristic polynomial of T splits, and let V be finite-dimensional. Let λ1,...,λk be the distinct eigenvalues of T. Then
(a) T is diagonalizable ⟺ the algebric multiplicity of λi is equal to the geometric multiplicity of λi, i.e., dim(Eλi), for each i(1≤i≤k).
(b) If T is diagonalizable and βi is an ordered basis for Eλi for each i(1≤i≤k), then β=k⋃i=1βi is an ordered basis for V consisting of eigenvectors of T.
Proof. For each i(1≤i≤k), let mi denote the algebric multiplicity of λi, di=dim(Eλi), and n=dim(V). Suppose that T is diagonalizable. Let β be a basis for V consisting of eigenvectors of T. For each i, let βi=β∩Eλi, and let ni=|βi|.
Note that for each i, ni≤di, because βi is a linearly independent subset of Eλi, and di≤mi by Theorem 1.
Suppose that u and v are the eigenvectors of T corresponding to λi and λj for some i,j(1≤i,j≤k), respectively. If u=v, then T(u)=λiu=λjv=T(v). Thus (λi−λj)u=0⟹λi=λj⨂. Thus βi(1≤i≤k) is pairwise disjoint. Since β consists of eigenvectors of T, ∑ki=1ni=n.
Then we have n=k∑i=1ni≤k∑i=1di≤k∑i=1mi=n. Thus ∑ki=1di=n. This means that di=mi,∀i.
As we showed above, ni=|βi|=di=dim(Eλi). Since βi is linearly independent subset of Eλi, βi is an ordered basis for Eλi. Let denote β=k⋃i=1βi. Then |β|=∑ki=1di=n. Hence β is an ordered basis for V consisting of eigenvectors of T. ◼
따라서 각 고유공간의 기저를 구해 합집합을 시켜줌으로서 주어진 선형 연산자를 대각화할 수 있다. 이러한 대각화 과정을 요약하면 다음과 같다.
Test for Diagonalization
Let T∈L(V), and let dim(V)=n.
1. Choose a convenient basis α for V (For example, the standard ordered basis for V can be chosen.)
2. Determine whether the characteristic polynomial of T splits: Solve the equation det([T]α−tI)=0.
3. If it does, then write the distinct eigenvalue λ of T and check the algebric multiplicity of each λ.
4. Find an ordered basis for each Eλ of [T]α.
5. Check that the algebric multiplicity of λ equal to the geometric multiplicity of λ for each λ.
6. If it does, then the union of these bases is a basis γ for Fn consisting of eigenvectors of [T]α.
7. Since each vector in γ is ϕα(v), where v is an eigenvector of T, the set consisting of these eigenvectors is the desired basis β.