Inner Product Space
·
Mathematics/Linear Algebra
이 포스트에서 $V$는 $F$-벡터공간으로 취급한다.Inner ProductDefinition 1. An inner product on $V$ is a function $\langle \cdot, \cdot \rangle: V \times V \longrightarrow F$, such that $\forall x, y, z \in V$ and $\forall c \in F$, the following hold:(a) $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$.(b) $\langle cx, y \rangle = c \langle x, y \rangle$.(c) $\overline{ \langle x, y \rangle..