Spectral Theorem

2023. 11. 21. 20:25·Mathematics/Linear Algebra
목차
  1. Spectral Theorem
  2. Definition 1
  3. Remark
  4. Corollary 1
  5. Corollary 2
  6. Corollary 3
  7. Corollary 4

Spectral Theorem

Theorem 1. Let T∈L(V)T∈L(V) where VV is a finite-dimensional inner product space over FF with the distinct eigenvalues λ1,⋯,λkλ1,⋯,λk. Assume that TT is normal if F=CF=C and that TT is hermitian if F=RF=R. For each i(1≤i≤k)i(1≤i≤k), let WiWi be the eigenspace of TT corresponding to the eigenvalue λiλi, and that TiTi be the orthogonal projection of VV on WiWi. Then the following statements are true.
(a) V=⨁ki=1WiV=⨁i=1kWi.
(b) If we denote W′i=⨁j≠iW′jWi′=⨁j≠iWj′, then W⊥i=W′iWi⊥=Wi′.
(c) TiTj=δijTiTiTj=δijTi for 1≤i,j≤k1≤i,j≤k.
(d) I=T1+⋯+TkI=T1+⋯+Tk.
(e) T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk.
Proof. Let xx denote x=x1+⋯+xkx=x1+⋯+xk for some xi∈Wi(1≤i≤k)xi∈Wi(1≤i≤k).
(a) By Theorem 2 and Theorem 1, TT is diagonalizable. Then by Theorem 3 and Theorem 1, T=⨁ki=1WiT=⨁i=1kWi.
(b) Since each TiTi is the orthogonal projection of VV, Wi=R(T)⊥=N(T)=⨁j≠iWiWi=R(T)⊥=N(T)=⨁j≠iWi by Theorem 1. 
(c) Note that TiTj(x)=Ti(xj)=δijxi=δijTi(x)TiTj(x)=Ti(xj)=δijxi=δijTi(x). Thus TiTj=δijTiTiTj=δijTi.
(d) Note that ∀x∈V∀x∈V, (T1+⋯+Tk)(x)=T1(x)+⋯+Tk(x)=x1+⋯+xk=x=I(x)(T1+⋯+Tk)(x)=T1(x)+⋯+Tk(x)=x1+⋯+xk=x=I(x). Thus I=T1+⋯+TkI=T1+⋯+Tk.
(e) Note that T(x)T(x) =T(x1)+⋯+T(xk)=T(x1)+⋯+T(xk) =λ1x1+⋯=λ1x1+⋯ +λk+λk xk=λ1T1(x)xk=λ1T1(x)+⋯+λkTk(x)=+⋯+λkTk(x)= (λ1T1+⋯+λkTk)(x)(λ1T1+⋯+λkTk)(x). Thus T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk. ■◼

Definition 1

Definition 1. Using the notation of above theorem,
(a) the set {λ1,...,λk}{λ1,...,λk} of eigenvalues of TT is called the spectrum of TT.
(b) the sum I=T1+⋯+TkI=T1+⋯+Tk is called the resolution of the identity operator induced by TT.
(c) the sum T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk is called the spectral decomposition of TT.

Remark

Remark. If T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk is the spectral decomposition of TT, then g(T)=g(λ1)T1+⋯+g(λk)Tk,∀g∈P(F)g(T)=g(λ1)T1+⋯+g(λk)Tk,∀g∈P(F). 
((∵)g(T)(x)=anTn(x)+⋯+a1T(x)+a0I(x)=an(Tn(x1)+⋯+Tn(xk))+⋯+a1(T(x1)+⋯+T(xk))+a0(x1+⋯+xk)=(anλn1x1+⋯+a1λ1x1+a0x1)+⋯+(anλnkxk+⋯+a1λ1x1+a0xk)=g(λ1)x1+⋯+g(λk)xk=g(λ1)T1(x)+⋯+g(λk)Tk(x).)((∵)g(T)(x)=anTn(x)+⋯+a1T(x)+a0I(x)=an(Tn(x1)+⋯+Tn(xk))+⋯+a1(T(x1)+⋯+T(xk))+a0(x1+⋯+xk)=(anλ1nx1+⋯+a1λ1x1+a0x1)+⋯+(anλknxk+⋯+a1λ1x1+a0xk)=g(λ1)x1+⋯+g(λk)xk=g(λ1)T1(x)+⋯+g(λk)Tk(x).)

Corollary 1

Corollary 1. If F=CF=C, then TT is normal ⟺⟺ T∗=g(T)T∗=g(T) for some g∈P(F)g∈P(F).
Proof. (⟹)(⟹)
Let T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk be the spectral decomposition of TT. Then T∗=¯¯¯¯¯λ1T1+⋯+¯¯¯¯¯λkTkT∗=λ1¯T1+⋯+λk¯Tk by Theorem 1. By the Lagrange Interpolation formula, we can choose a polynomial gg such that g(λi)=¯¯¯¯¯λig(λi)=λi¯ for 1≤i≤k1≤i≤k. Then T∗=g(λ1)T1+⋯+g(λk)Tk=g(T)T∗=g(λ1)T1+⋯+g(λk)Tk=g(T) by remark.
(⟸⟸)
By Theorem 1 (c), TT∗=g(T)∗g(T)=|g(λ1)|2T1+⋯+|g(λk)|2Tk=g(T)g(T)∗=T∗TTT∗=g(T)∗g(T)=|g(λ1)|2T1+⋯+|g(λk)|2Tk=g(T)g(T)∗=T∗T. ■◼

Corollary 2

Corollary 2. If F=CF=C, then TT is unitary ⟺⟺ T is normal and |λ|=1|λ|=1 for every eigenvalue λλ of TT.
Proof. (⟹⟹)
It is immediate from Corollary 2.
(⟸⟸)
Let T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk be the spectral decomposition of TT. Then TT∗=T∗T=|λ1|2T1+⋯+|λk|2Tk=T1+⋯+Tk=ITT∗=T∗T=|λ1|2T1+⋯+|λk|2Tk=T1+⋯+Tk=I by Theorem 1. ■◼

Corollary 3

Corollary 3. If F=CF=C and TT is normal, then TT is hermitian ⟺⟺ every eigenvalue of TT is real.
Proof. (⟹⟹)
It is immediate from Lemma.
(⟸⟸)
Let T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk be the spectral decomposition of TT. Then T∗=¯¯¯¯¯λ1T1+⋯+¯¯¯¯¯λkTk=λ1T1+⋯+λkTk=TT∗=λ1¯T1+⋯+λk¯Tk=λ1T1+⋯+λkTk=T. ■◼

Corollary 4

Corollary 4. Let TT as in the spectral theorem with spectral decomposition T=λ1T1+⋯+λkTkT=λ1T1+⋯+λkTk. Then each TjTj is a polynomial in TT. 
Proof. 
저작자표시 (새창열림)
  1. Spectral Theorem
  2. Definition 1
  3. Remark
  4. Corollary 1
  5. Corollary 2
  6. Corollary 3
  7. Corollary 4
'Mathematics/Linear Algebra' 카테고리의 다른 글
  • Positive Definite, Semidefinite
  • Lagrange Interpolation Formula
  • Orthogonal Projection
  • Projection
Erdos
Erdos
수학과, 물리학과 학부생들이 운영하는 팀블로그입니다.
  • Erdos
    SAMICO
    Erdos
  • 전체
    오늘
    어제
    • 분류 전체보기 (273)
      • Mathematics (183)
        • Real analysis (30)
        • Linear Algebra (64)
        • Number Thoery (11)
        • Calculus (55)
        • Probability (6)
        • Set Theory (13)
        • Writing (2)
        • Problems (1)
        • Abstract Algebra (1)
      • Physics (71)
        • 일반물리 (2)
        • 상대성이론과 양자역학 입문 (35)
        • 열물리 (15)
        • 수리물리 (13)
        • 고전역학 (6)
      • Computer (7)
      • 독서 (12)
        • 과학 (5)
        • 문학 (2)
        • 자기계발서 (4)
  • 공지사항

    • 참고서적
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.2
Erdos
Spectral Theorem

개인정보

  • 티스토리 홈
  • 포럼
  • 로그인
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.