The Null Space and Range
·
Mathematics/Linear Algebra
이 포스트에서 $V, W$는 모두 $F$-벡터공간으로 취급한다.The null space and rangeDefinition 1. Let $T \in \mathcal{L}(V, W)$.(a) The null space (or kernel) $N(T)$ of $T$ is the set $N(T) = \{ x \in V \,|\, T(x) = \mathbf{0} \}.$(b) The range (or image) $R(T)$ of $T$ is the set $R(T) = \{ T(x) \in W \,|\, x \in V \}$. Theorem 1Theorem 1. Let $T \in \mathcal{L}(V, W)$. Then $N(T) \leq V$ and $R(T) \leq W$.Proof. Clearl..