Cramer's Rule
·
Mathematics/Linear Algebra
Cramer's RuleTheorem 1. (Cramer's Rule) Let $Ax = b$ be a system of $n$ linear equations in $n$ unknowns, where $x = (x_1, ..., x_n)^t$. If $\det(A) \neq 0$, then this system has a unique solution, and $$x_k = \frac{\det(M_k)}{\det(A)}, \forall k \in \{1, ..., n\},$$ where $M_k \in M_{n \times n}(F)$ obtained from $A$ by replacing column $k$ of $A$ by $b$.Proof. Let $y \in F^n$, and let denote $..
What Happens to $\det(A)$ If We Perform an Elementary Row Operation on $A$
·
Mathematics/Linear Algebra
What Happens to $\det(A)$ if we perform an elementary row operation on $A$Theorem 1. Let $A \in M_{n \times n}(F)$ and $B = R(A)$, where $R$ is an elementary row operation. Then the followings hold:(a) If $R = R_{i \leftrightarrow j}$, then $\det(B) = -\det(A)$.(b) If $R = R_{ci}$, then $\det(B) = c \cdot \det(A)$.(c) If $R = R_{i +  cj}$, then $\det(B) = \det(A)$.
Determinant of a Linear Operator
·
Mathematics/Linear Algebra
이 포스트에서 $V$는 유한차원 $F$-벡터공간으로 취급한다.Determinant of a Linear OperatorDefinition 1. Let $T \in \mathcal{L}(V)$. We define the determinant of $T$, denoted $\det(T)$, to be $\det(T) = \det([T]_{\beta})$, where $\beta$ is an ordered basis for $V$.     선형 연산자 $T$의 행렬 표현의 행렬식으로 $T$의 행렬식을 정의할 수 있다. 이러한 정의는 $V$의 기저의 선택에 의존하지 않는다. Let $\beta, \gamma$ be ordered bases for $V$. By Theorem 2, we have $[T]_{\ga..
Determinant
·
Mathematics/Linear Algebra
DeterminantDefinition 1. The determinant of $A \in M_{n \times n}(F)$ is a scalar $$\text{det}(A) = \sum_{j=1}^n (-1)^{i+j}A_{ij}\text{det}(\widetilde{A_{ij}})$$ for some row $i$, where $\widetilde{A_{ij}}$ is the $(n-1) \times (n-1)$ matrix obtained from $A$ by deleting row $i$ and column $j$.If $n = 1$, then $\det(A) := A_{11}.$    Determinant, 즉 행렬식은 치환으로 정의되나 여기서는 흔히 라플라스 전개라고 알려진 방법으로 정의하여 ..
Determinant
·
Mathematics/Linear Algebra
Determinant, 무엇을 결정(determine)한다는 말일까? 그 답을 찾기 위해서 우리는 the system of linear equations로 돌아가야 한다. Square matrix $A$에 대해서 $A \textbf{x} = \textbf{b}$라는 system이 주어져 있다. 이때 적절한 elementary row operation을 통해 $A$를 identity matrix $I$와 row-equivalent하도록 변형할 수 있는 경우가 존재할 수 있다. 그말인즉슨 $A$가 invertible하여서 사용한 elementary matrix들의 곱이 $A$의 inverse가 된다는 말이고, 역으로 어떻게 elementary row operation을 하여도 $I$와 row-equivale..
How to Solve The System of Linear Equations
·
Mathematics/Linear Algebra
Equivalence of the system of linear equationsDefinition 1. Two systems of linear equations are called equivalent if they have the same solution set.Theroem 1Theorem 1. Let $Ax = b$ be a system of $m$ linear equations in $n$ unknowns, and let $C$ be an invertible $m \times m$ matrix. Then the system $(CA)x = Cb$ is equivalent to $Ax = b$.Proof. Denote $K$ and $K_C$ the solution set to $Ax = b$ an..
Reduced Row Echolen Form
·
Mathematics/Linear Algebra
Reduced Row Echelon FormDefinition 1. A matrix is said to be in row echelon form (REF) if the following conditions are satisfied:(1) Any row containing a nonzero entry precedes any row in which all the entries are zero.(2) The first nonzero entry in each row is $1$, called the leading $1$, or the pivot.(3) Below each leading $1$ is a column of zeros.A matrix is said to be in reduced row echelon ..
A Homogeneous System of Linear Equations
·
Mathematics/Linear Algebra
Homogeneous SystemDefinition 1. A system $Ax = b$ is said to be homogeneous if $b = 0$. Otherwise it is said to be nonhomogeneous.    번역하면 homogeneous는 '동차', 즉 차수가 같다는 말이다. $b$는 방정식에서 상수항에 해당되고, 그 외의 항들은 모두 차수가 1인 미지수들이 곱해져 있다. 즉 $b$에 해당하는 항들을 제외하면 모두 미지수의 차수가 같으므로, 만일 상수항이 0이라면 상수항에 동일한 차수의 미지수를 곱한 것으로 생각할 수 있으므로 시스템 자체를 차수가 같은, 즉 동차 연립방정식이라고 볼 수 있다.Theorem 1Theorem 1. Let $Ax = \mathbf{0}$ be ..
A System of Linear Equations
·
Mathematics/Linear Algebra
A System of Linear EquationsDefinition 1. The system of equations $$a_{11}x_1 + \cdots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n = b_m,$$ where $a_{ij}, b_i \in F$ and $x_j$ are $n$ variables taking value in $F$, is called a system of $m$ linear equations in $n$ unknowns over $F$.     번역하면 선형 연립방정식이며, $A =\begin{pmatrix} a_{11} & \cdots & a_{1n} \\\vdots & \ddots & \vdots \\a..
How To Compute The Inverse of a Matrix
·
Mathematics/Linear Algebra
Inverse of a MatrixDefinition 1. Let $A \in M_{n \times n}(F)$. Then $A$ is invertible if $\exists B \in M_{n \times n}(F)$ such that $AB = BA = I$. The matrix $B$ is called the inverse of $A$, denoted $A^{-1}$.    위와 같이 정의되는 역행렬을 구하는 방법은 여러가지가 있으나, 여기서는 elementary operation을 이용하여 구하는 방법만을 다룬다.Augmented MatrixDefinition 2. Let $A \in M_{m \times n}(F)$ and $B \in M_{m \times p}(F)$. Then the aug..