How To Calculate The Rank of a Matrix
·
Mathematics/Linear Algebra
행렬의 랭크는 주어진 행렬을 다루기 쉬운 꼴로 변환함으로써 쉽게 계산해 낼 수 있다. 행렬을 RREF로 변환하는 데 성공했다면 자연스럽게 linearly independent column들을 쉽게 찾아낼 수 있으므로, 단순히 그 개수를 셈으로써 행렬의 랭크를 계산할 수 있다.Theorem 1Theorem 1. The rank of any matrix equals the maximum number of its linearly independent columns.Proof. Let AMm×n(F)AMm×n(F). Consider B:={LA(e1),...,LA(en)}={[A]1,...,[A]n}B:={LA(e1),...,LA(en)}={[A]1,...,[A]n} where [A]i[A]i is the iith column..
rank(ABAB) rank(AA), rank(BB)
·
Mathematics/Linear Algebra
Theorem 1Theorem 1. Let TL(V,W)TL(V,W) and UL(W,Z)UL(W,Z) where V,WV,W and ZZ are finite-dimensional vector space, and let A,BA,B be matrices such that ABAB is defined. Then(a) rank(UT)(UT) rank(UU),(b) rank(UT)(UT) rank(TT),(c) rank(AB)(AB) rank(AA),(d) rank(AB)(AB) rank(BB).Proof. Let A=[U]γβ,B=[T]βαA=[U]γβ,B=[T]βα, where $\alpha, \b..
Rank of Matrix
·
Mathematics/Linear Algebra
Rank of MatrixDefinition 1. Let AMm×n(F)AMm×n(F). We define the rank of AA, denoted rank(AA), to be the rank of LA:FnFmLA:FnFm.Theorem 1Theorem 1. Let TL(V,W)TL(V,W), and let ββ and γγ be oredered bases for V,WV,W, respectively. Then rank(TT) = rank([T]γβ[T]γβ).Proof. Define A=[T]γβA=[T]γβ. Then rank(TT) = rank(LALA) = r..
The Elementary Operation
·
Mathematics/Linear Algebra
Elementary OperationDefinition 1. Let AMm×n(F).AMm×n(F). The following operations on the rows (columns) of AA is called an elementary row (column) operation:- Type 1: Interchanging any two rows (columns) of AA.- Type 2: Multiplying any row (column) of AA by a nonzero scalar. - Type 3: Adding any scalar multiple of a row (column) of AA to another row (column).    임의의 행렬이 주어졌을 때, 그 행렬의..
Dual Space
·
Mathematics/Linear Algebra
이 포스트에서 V,WV,W는 유한차원 FF-벡터공간으로 취급한다.Linear FunctionalDefinition 1. Let TL(V,F)TL(V,F). Then we call TT a linear functional on VV.Dual SpaceDefinition 2. We define the dual space of VV to be the vector space L(V,F)L(V,F), denoted by VV.The double dual (or bidual) space VV is the dual space of VV.    선형 변환 T:VFT:VF을 linear functional, 선형 범함수라고 부르고 이들을 ..
Similarity of Matrix
·
Mathematics/Linear Algebra
Similar Definition 1. Let A,BMn×n(F)A,BMn×n(F). We say that BB is similar to AA if QMn×nQMn×n such that QQ is invertible and B=Q1AQB=Q1AQ. Property Property. Let A,BMn×n(F)A,BMn×n(F) be the similar matrices. Then (a) AA and BB have the same characteristic polynomial. Proof. (a) Since AA and BB are similar, invertible $Q \in M_{n \times n}(F)..
The Change of Coordinate Matrix
·
Mathematics/Linear Algebra
이 포스트에서 VV는 유한차원 FF-벡터공간으로 취급한다.    VV의 기저 β={x,y},β={x,y}β={x,y},β={x,y}이 주어졌을 때 임의의 벡터 vVvV는 각각의 기저를 사용해 좌표 벡터 [v]β,[v]β[v]β,[v]β으로 표현 가능하다. 이때 좌표를 변환하는, 즉 두 좌표 벡터 사이의 관계식을 구할 수 있다.Introduction    [x]β=(ab),[y]β=(cd)라고 가정하자. 즉 $$x' = ax + by \\ y' = cx + dy \\ \Longrightarrow \begin..
The Fundamental Theorem of Linear Algebra
·
Mathematics/Linear Algebra
이 포스트에서 V,W는 모두 F-벡터공간으로 취급한다.Theorem 1 (The Fundamental Theorem of Linear Algebra)Theorem 1. Let dim(V) = n and dim(W) = m, and let β,γ be ordered bases for V,W, respectively. Then the function Φ:L(V,W)Mm×n(F), defined by Φ(T)=[T]γβ for TL(V,W), is an isomorphism.Proof. (1) Φ..
Isomorphism
·
Mathematics/Linear Algebra
이 포스트에서 V,W는 모두 F-벡터공간으로 취급한다.Inverse of a matrixDefinition 1. Let AMn×n(F). Then A is invertible if BMn×n(F) such that AB=BA=In. The matrix B is called the inverse of A and is denoted by A1.IsomorphismDefinition 2. We say that V and W are isomorphic, denoted VW, if TL(V,W) such that T is i..
Left-Multiplication Transformation
·
Mathematics/Linear Algebra
Left-multiplication transformationDefinition 1. Let AMm×n(F). We denote by LA the mapping LA:FnFm defined by LA(x)=Ax,xFn. We call LA a left-multiplication transformation.Theorem 1Theorem 1. Let A,BMm×n(F). Then we have the following properties: (a) Every left-multiplication is linear.(b) $L_A \..